TREATMENT OF SULFATE WASTEWATER BY SULFATE-REDUCING BACTERIA WITH RESIDUAL SLUDGE THERMAL ALKALINE-HYDROLYSATE AS CARBON SOURCE
-
摘要: 针对在处理碱法烟气脱硫所产生的高浓度硫酸盐废水过程中存在的碳源不足问题,探究了以剩余污泥热碱解液作为硫酸盐还原菌混合菌群(SRBs)碳源的可行性。通过SRBs对在不同条件下破解剩余污泥产生的热碱解液的利用效果,确定最利于SRBs利用的剩余污泥热碱解条件为:pH=13,T=70℃,破解时间为10 h;最佳硫酸盐(SO42-)去除反应的工艺参数为:pH=7,T=35℃,ρ(COD)=10000 mg/L,ρ(SO42-)=2500 mg/L。在最佳反应条件下,SO42-去除率可以达到90%以上,COD利用率达到80%。将SRBs利用污泥热碱解液作为碳源去除SO42-的效果与4种SRBs常见碳源(乳酸钠、丙酸钠、乙酸钠和葡萄糖)进行对比,实验证明:5种碳源均可被SRBs利用,热碱解液为碳源时SO42-去除率最高,乳酸钠次之,乙酸钠最低。研究证明剩余污泥热碱解液可以作为SRBs的优质碳源,这可为处理SO42-废水和污泥资源化处置提供新思路。Abstract: This study aimed at the problem of insufficient carbon sources during the treatment of sulfate wastewater and explored the feasibility of using the alkaline-thermal hydrolysate of residual sludge as the carbon source of sulfate-reducing bacteria(SRBs). Batch experimental results showed that the optimum sludge pretreatment conditions were T=70 ℃, initial pH=13 and t=10 h, and the optimal parameters for SO42- removal by SRBs were ρ(COD)=10000 mg/L, ρ(SO42-)=2500 mg/L, initial pH=7, and T=35 ℃. Under this condition, the removal efficiency of SO42- reached 90% above, and the utilization efficiency of ρ(COD) reached 80%. The SO42- removal efficiency with sludge alkaline-thermal hydrolase was compared with four other SRBs common carbon sources(sodium lactate, sodium propionate, sodium acetate, and glucose), and the experiment showed that the removal efficiency of SO42- using sludge hydrolysate as SRBs carbon source was higher than other carbon sources. The research confirmed that the residual sludge alkaline-thermal hydrolysate can be used as the carbon source of SRBs, which provided favorable support for the treatment of SO42- wastewater and utilization of residual sludge.
-
Key words:
- alkaline-thermal hydrolysate /
- residual sludge /
- SRBs /
- sulfate wastewater /
- supplementary carbon source
-
[1] LI X,HAN J,LIU Y,et al.Summary of research progress on industrial flue gas desulfurization technology[J].Separation and Purification Technology,2022,281:119849. [2] 王海棠,钟振成,王靖宇,等.高镁型脱硫废水零排放处理技术研究[J].应用化工,2022,51(9):2762-2766. [3] 黄超,黄飞平,秦振清,等.GLT络合铁脱硫技术在焦炉煤气钠碱法脱硫装置上的工业应用[J].河南化工,2022,39(10):44-46. [4] 高泽磊,叶新军,秦茜,等.环集烟气脱硫废液压滤设备及管道材质的选型[J].硫酸工业,2021(2):33-35,38. [5] KUSHKEYYCH I,HYZOVA B,VITEZOVA M,et al.Microscopic methods for identification of sulfate-reducing bacteria from various habitats[J].International Journal of Molecular Sciences,2021,22(8):4007. [6] 祝紫莹,刘倩倩,邓燕萍,等.硫酸盐还原菌介导水铁矿相转化特征及其产物对Cr(Ⅵ)固存的影响[J].环境科学学报,2022,42(12):231-240. [7] 周磊,徐乐昌,高洁.硫酸盐还原菌复合碳源的筛选[J].铀矿冶,2022,41(1):73-77. [8] 郭琼,肖琳,于忆潇,等.以圆币草发酵液为碳源时硫酸盐还原菌处理重金属废水[J].微生物学通报,2017,44(9):2019-2028. [9] 张琳琳,刘亚洁,陈诗怡,等.果皮发酵液为碳源的硫酸盐还原性与酸性含铀废水处理效果[J].有色金属(冶炼部分),2022(6):74-83. [10] 戴晓虎.我国污泥处理处置现状及发展趋势[J].科学(上海),2020,72(6):30-34. [11] 李哲,林嘉薇,胡勇有.热碱解—水解预处理剩余污泥的效果研究[J].华南师范大学学报,2019,51(1):42-48. [12] GAO J,WANG Y,YAN Y,et al.Protein extraction from excess sludge by alkali-thermal hydrolysis[J].Environmental Science and Pollution Research,2020,27(8):8628-8637. [13] 徐静阳,大浦宏隆,刘德华,等.剩余污泥热碱解及其用于微生物油脂生产的探索[J].生物工程学报,2011,27(3):482-488. [14] XIAO B,DAI Q,YU X,et al.Effects of sludge thermal-alkaline pretreatment on cationic red X-GRL adsorption onto pyrolysis biochar of sewage sludge[J].Journal of Hazardous Materials,2018,343:347-355. [15] YU X,ZHANG C,QIU L,et al.Anaerobic digestion of swine manure using aqueous pyrolysis liquid as an additive[J].Renewable Energy,2020,147:2484-2493. [16] XU C,DING Y,LIU J,et al.Anaerobic digestion of sulphate wastewater mediated by biochar[J].Environmental Technology,2023,44:1667-1678. [17] 张小里,刘海洪,陈开勋,等.硫酸盐还原菌生长规律的研究[J].西北大学学报(自然科学版),1999(5):397-402. [18] NA S,Shon H,Kim J.Minimization of excess sludge and cryptic growth of microorganisms by alkaline treatment of activated sludge[J].The Korean Journal of Chemical Engineering,2011,28(1):164-169. [19] 赵虹焰,周集体,金若菲,等.热碱法破解污泥动态实验的条件优化[J].环境工程,2020,38(7):71-74,121. [20] 罗毅,李晓丽,刘晖,等.超声波、碱、超声波/碱预处理污泥对污泥水解效果的影响[J].河北工业科技,2015,32(6):552-556. [21] 王孝平,邢树礼.考马斯亮蓝法测定蛋白含量的研究[J].天津化工,2009,23(3):40-42. [22] 董群,郑丽伊,方积年.改良的苯酚—硫酸法测定多糖和寡糖含量的研究[J].中国药学杂志,1996(9):38-41. [23] CHAI G,WANG D,ZHANG Y,et al.Effects of organic substrates on sulfate-reducing microcosms treating acid mine drainage:performance dynamics and microbial community comparison[J].Journal of Environmental Management,2023,330:117148. [24] HENDERSON R K,BAKER A,MURPHY K R,et al.Fluorescence as a potential monitoring tool for recycled water systems:a review[J].Water Research,2009,43(4):863-881. [25] HUANG Y,WANG Y,LIU S,et al.Enhanced hydrolysis-acidification of high-solids and low-organic-content sludge by biological thermal-alkaline synergism[J].Bioresource Technology,2019,294:122234. [26] ZHANG Z,ZHANG C,YANG Y,et al.A review of sulfate-reducing bacteria:metabolism,influencing factors and application in wastewater treatment[J].Journal of Cleaner Production,2022,376:134109. [27] 杨建设,黄玉堂,吴楚施,等.温度和pH对硫酸盐还原菌活性的影响[J].茂名学院学报,2006,16(4):1-3. [28] 李新荣,沈德中.硫酸盐还原菌的生态特性及其应用[J].应用与环境生物学报,1999(增刊1):10-13. [29] JANYASUTHIWONG S,RENE E R,ESPOSITO G,et al.Effect of pH on the performance of sulfate and thiosulfate-fed sulfate reducing inverse fluidized bed reactors[J].Journal of Environmental Engineering,2016,9(142):C4015012. [30] YANG G,ZHANG G,ZHUAN R,et al.Transformations,inhibition and inhibition control methods of sulfur in sludge anaerobic digestion:a review[J].Current Organic Chemistry,2016,26(20):2780-2789. [31] SHARMA K,DERLON N,HU S,et al.Modeling the pH effect on sulfidogenesis in anaerobic sewer biofilm[J].Water Research,2014,49:175-185. [32] NIELSEN G,COUDERT L,JANIN A,et al.Influence of organic carbon sources on metal removal from mine impacted water using sulfate-reducing bacteria bioreactors in cold climates[J].Mine Water and the Environment,2019,38(1):104-118. [33] LUO H,TENG W,LIU G,et al.Sulfate reduction and microbial community of autotrophic biocathode in response to acidity[J].Process Biochemistry,2017,54:120-127. [34] HEMALATHA M,SHANTHIS J,VENKATA M S.Self-induced bioelectro-potential influence on sulfate removal and desalination in microbial fuel cell[J].Bioresource Technology,2020,309:123326. [35] LI J,CAI M,MIAO Y,et al.Bacterial community structure and predicted function in an acidogenic sulfate-reducing reactor:effect of organic carbon to sulfate ratios[J].Bioresource Technology,2019,293:122020. [36] WASMUND K,MUßMANN M,LOY A.The life sulfuric:microbial ecology of sulfur cycling in marine sediments[J].Environmental Microbiology Reports,2017,9(4):323-344. [37] LEE Y W,HOANG T S,RHEE M,et al.Sinirhodobacter hankyongi sp.nov.,a novel denitrifying bacterium isolated from sludge[J].International Journal of Systematic and Evolutionary Microbiology,2020,70(1):668. [38] LI W,LIU J,ZHEN Y,et al.Simultaneous removal of nitrite and organics in a biofilm-enhanced high-salt wastewater treatment system via mixotrophic denitrification coupled with sulfate reduction[J].Journal of Water Process Engineering,2021,40:101976. [39] KESHRI J,PRADEEP R A,SIME-NGANDO T.Distinctive patterns in the taxonomical resolution of bacterioplankton in the sediment and pore waters of contrasted freshwater lakes[J].Environmental Microbiology,2018,75(3):662-673. [40] YAN J,YE W,JIAN Z,et al.Enhanced sulfate and metal removal by reduced graphene oxide self-assembled Enterococcus avium sulfate-reducing bacteria particles[J].Bioresource Technology,2018,266:447-453. [41] RAMPELOTTO P H.Ecophysiology and Application of Acidophilic Sulfur-Reducing Microorganisms[M].Switzerland:Springer International Publishing AG,2016:141-175. [42] ZHANG L,LIN X,ZHANG Z,et al.Elemental sulfur as an electron acceptor for organic matter removal in a new high-rate anaerobic biological wastewater treatment process[J].Chemical Engineering Journal,2018,331:16-22. [43] HORN E J,VAN HILLE R P,OYEKOLA O O,et al.Functional microbial communities in hybrid linear flow channel reactors for desulfurization of tannery effluent[J].Microorganisms,2022,10(11):2305. [44] QIAN Y,XU M,DENG T,et al.Synergistic interactions of Desulfovibrio and Petrimonas for sulfate-reduction coupling polycyclic aromatic hydrocarbon degradation[J].Journal of Hazardous Materials,2021,407:124385.
点击查看大图
计量
- 文章访问数: 105
- HTML全文浏览量: 13
- PDF下载量: 10
- 被引次数: 0