PHOSPHORUS REMOVAL PERFORMANCE AND MECHANISM IN WATER OF ZINC IRON HYDROTALCITE MODIFIED RED MUD
-
摘要: 为解决水体中的磷超标问题,采用碱性共沉淀法将锌铁水滑石(Zn/Fe-LDHs)负载于赤泥(RM)表面制得Zn/Fe-LDHs改性赤泥(ZFRM),用以去除水体中的磷。通过动力学实验、热力学实验、再生实验,并结合SEM、BET、XRD、FTIR表征手段研究Zn/Fe-LDHs改性赤泥对磷酸盐的去除性能及机理。实验结果表明:ZFRM对磷的吸附过程符合准二级动力学和Langmuir吸附等温模型,45℃下拟合可得磷酸盐最大吸附量可达56.26 mg/g,吸附反应为自发、熵增的吸热反应。ZFRM的除磷能力受pH影响较小。溶液中共存的CO32-对磷的吸附有明显的抑制作用。再生实验中,ZFRM经过4次再生后吸附量为19.07 mg/g,仍具有良好的吸附性能。此外,层片状的锌铁水滑石已成功覆着于絮状赤泥表面,形成发达的孔隙结构,比表面积大幅提高。吸附机理主要包括离子交换、配位反应、静电作用。与其他除磷材料相比,合成的ZFRM除磷效率高,可再生性强,原料价廉易得,合成方法简单,是具有应用潜力的高效除磷剂。
-
关键词:
- 赤泥 /
- Zn/Fe-LDHs /
- 磷酸盐 /
- 吸附 /
- 水滑石
Abstract: To solve the problem of excessive phosphorus in water, Zn/Fe-LDHs modified red mud(ZFRM) was prepared by coprecipitating Zn/Fe-LDHs onto the surface of red mud(RM) under alkaline conditions, and used to remove phosphate from wastewater. The phosphate removal performance and mechanism of Zn/Fe-LDHs modified red mud were studied by kinetic experiments, thermodynamic experiments, and regeneration experiments, combined with SEM, BET, XRD, and FTIR characterization. The results showed that the adsorption process of ZFRM to phosphorus conformed to the quasi-second-order kinetic model and Langmuir adsorption isotherm model. At 45 ℃, the maximum adsorption capacity was 56.26 mg/g, and the adsorption reaction was spontaneous and entropy-increasing endothermic reaction. The phosphorus removal capacity of ZFRM was less affected by pH. Carbonate ions coexisting in water can inhibit phosphorus adsorption. In the regeneration experiment, the adsorption capacity of ZFRM after 4 regenerations was 19.07 mg/g, and still had good adsorption performance. In addition, lamellar zinc iron hydrotalcite had been successfully coated on the surface of the flocculent red mud, forming a developed pore structure, and significantly increasing the specific surface area. The adsorption mechanism mainly included ion exchange, coordination reaction, and electrostatic action. Compared with other phosphorus removal materials, the synthesized ZFRM had high phosphorus removal efficiency, strong reproducibility, cheap raw materials, and simple synthesis process. It was a highly effective phosphorus removal agent with great potential in application.-
Key words:
- red mud /
- Zn/Fe-LDHs /
- phosphate /
- adsorption /
- hydrotalcite
-
[1] 吴昀纾,蔡柏岩.丛枝菌根真菌介导植物磷元素吸收机理的研究进展[J].山东农业科学,2022,54(8):137-143. [2] 赵中琦,赵研,郎朗,等.Fe3O4@CNF@Zn-BTC复合材料制备及其去除水中磷的性能[J].环境工程,2021,39(8):93-98. [3] DAI Y,WANG W,LU L,et al.Utilization of biochar for the removal of nitrogen and phosphorus[J].Journal of Cleaner Production,2020 (C):120573-120573. [4] AYDIN S,AYDIN M E,BEDUK F,et al.Removal of antibiotics fromaqueous solution by using magnetic Fe3O4/red mud-nanoparticles[J].Science of the Total Environment,2019,670:539-546. [5] TANGDE V M,PRAJAPATI S S,MANDAL B B,et al.Study ofkinetics and thermodynamics of removal of phosphate from aqueoussolution using activated red mud[J].International Journal EnvironmentalResearch,2017,11(1):39-47. [6] 万芹莉,李芹,庞茵,等.黄腐酸用于磷石膏脱碱赤泥土壤化的可行性研究[J].环境工程,2022,40(7):31-37. [7] 赵聪,彭道平,李芹,等.MgO改性赤泥复合材料对废水中氮磷的同步回收[J].中国环境科学,2022,42(1):135-145. [8] LU Y,DONG W,WANG W,et al.A comparative study of different natural palygorskite clays for fabricating cost-efficient and eco-friendly iron red composite pigments[J].Applied Clay Science,2019,167:50-59. [9] DING J,HUANG D,WANG W,et al.Effect of removing coloring metal ions from the natural brick-red palygorskite on properties of alginate/palygorskite nanocomposite film[J].International Journal Of Biological Macromolecules,2019,122:684-694. [10] 符剑刚,贾阳,李政,等.磁性生物炭负载Mg-Fe水滑石的制备及其吸附水中 Cd(Ⅱ)和 Ni(Ⅱ)的性能[J].化工环保,2019,39(5):574-580. [11] 刘博伟,张长平,李秀仙,等.ZnFe-LDHs改性粉煤灰对模拟废水中镉离子的吸附性能[J].环境工程学报,2022,16(5):1429-1439. [12] 程福龙,聂凡贵,赵嫦欣,等.生物炭Mg/Al-LDHs复合材料对磷的吸附特性及机理[J].农业工程学报,2021,37(2):226-234. [13] KARTHIKEYAN P,MEENAKSHI S.Enhanced removal of phosphate and nitrate ions by a novel ZnFe LDHs-activated carbon composite[J].Sustainable Materials and Technologies,2020,25:e00154. [14] 韩轩,王丽红,柏雪源,等.脱碱赤泥催化剂制备及对秸秆催化热解生物油成分的影响[J].化工进展,2022,41(9):4723-4732. [15] DI G,ZHU Z,ZHANG H,et al.Simultaneous removal of several pharmaceuticals and arsenic on Zn-Fe mixed metal oxides:combination of photocatalysis and adsorption[J].Chemical Engineering Journal,2017,328:141-151. [16] 唐刚,杨亚东,刘秀玉,等.工业固体废弃物在阻燃材料领域的应用进展[J].化工矿物与加工,2022,51(11):13-18. [17] 国家环境保护局.水质总磷的测定钼酸铵分分光光度法:GB 11893—89[S].北京,1990. [18] 刘枫.Zn/Fe-LDHs改性陶粒对农业径流磷的去除性能研究[D].杭州:浙江大学,2020. [19] HAO H,WANG Y,SHI B.NaLa(CO3)2 hybridized with Fe3O4 for efficient phosphate removal:synthesis and adsorption mechanistic study[J].Water Research,2019,155:1-11. [20] 吴庆庆.锌铁类水滑石及其改性材料对水中磷和Cr(Ⅵ)的吸附研究[D].南昌:华东交通大学,2019. [21] DATKA J,BOCZAR M,GIL B.Heterogeneity of hydroxyl groups in zeolites studied by IR spectroscopy[J].Colloids & Surfaces A Physicochemical & Engineering Aspects,1995,105(1):1-18. [22] KLOPROGGE J T,FROST R L.Fourier Transform Infrared and Raman Spectroscopic Study of the Local Structure of Mg-,Ni-,and Co-Hydrotalcites[J].Journal of Solid State Chemistry,1999,146(2):506-515. [23] LIU J,LI X,LUO J,et al.Enhanced decolourisation of methylene blue by LDH-bacteriaaggregates with bioregeneration[J].Chemical Engineering Journal,2014,242:187-194. [24] MALLAKPOUR S,BEHRANVAND V.Recycled PET/MWCNT ZnO quantum dot nanocomposites:adsorption of Cd(Ⅱ) ion,morphology,thermal and electrical conductivity properties[J].Chemical Engineering Journal,2017,313:873-881. [25] SHI W M,FU Y W,JIANG W,et al.Enhanced phosphate removalby zeolite loaded with Mg-Al-La ternary (hydr)oxides from aqueous solutions:performance and mechanism[J].Chemical Engineering Journal,2019,357:33-44. [26] MABAYOJE O,SEREDYCH M,BANDOSZ T J.Reactive adsorption of hydrogen sulfide on visible light photoactive zinc (hydr)oxide/graphite oxide and zinc (hydr)oxychloride/graphite oxide composites[J].Applied Catalysis B:Environmental,2013,132:321-331. [27] LIU J,ZHOU Q,CHEN J,et al.Phosphate adsorption on hydroxyl-iron-lanthanum doped activated carbon fiber[J].Chemical Engineering Journal,2013,215/216:859-867. [28] KONG L,TIAN Y,PANG Z,et al.Synchronous phosphate and fluoride removal from water by 3D rice-like lanthanum-doped La@MgAl nanocomposites[J].Chemical Engineering Journal,2019,371:893-902. [29] 张倩.层状双金属氢氧化物除磷材料及氨基酸插层改性性能研究[D].重庆:重庆大学,2018. [30] 陈丽红,张翔凌,何春艳,等.Zn-LDHs覆膜改性麦饭石对Cd(Ⅱ)吸附性能及其作用机理研究[J].环境科学学报,2019,39(12):4004-4014. [31] RAJESHKHANNA G,KANDULA S,SHRESTHA K R,et al.A new class of Zn1-xFex-Oxyselenide and Zn1-xFex-LDH nanostructured materialwith remarkable bifunctional oxygen and hydrogen evolutionelectrocatalytic activities for overall water splitting[J].Small (Weinheim an der Bergstrasse,Germany),2018,14(51):1803638. [32] 刘小倩.改性海泡石处理水中微量磷的应用研究[D].湘潭:湖南科技大学,2019. [33] 袁野.类水滑石制备改性以及深度除磷的研究[D].郑州:郑州大学,2018. [34] 刘凡,介晓磊,贺纪正.不同pH条件下针铁矿表面磷的配位形式及转化特点[J].土壤学报,1997(4):367-374. [35] SU Y,YANG W Y,SUN W Z,et al.Synthesis of mesoporous cerium-zirconium binary oxide nanoadsorbents by a solvothermal process and their effective adsorption of phosphate from water[J].Chemical Engineering Journal,2015,268:270-279. [36] 施川,张盼月,郭建斌,等.污泥生物炭的磷吸附特性[J].环境工程学报,2016,10(12):7202-7208. [37] 张楠.天然纤维素和水滑石的改性及其对重金属和磷酸根的吸咐研究[D].合肥:中国科学技术大学,2016. [38] 朱诗蓓.FeOOH对重金属和富营养元素的吸附研究[D].扬州:扬州大学,2016. [39] 徐高扬,郭梦岩,许玉星,等.聚吡咯改性赤泥的制备及其对废水中磷的吸附试验研究[J].湿法冶金,2021,40(6):488-494. [40] 鲁镜镜,谢燕,李宸,等.载镧磁化赤泥处理含磷废水的研究[J].无机盐工业,2023,55(2):99-105. [41] 肖作义,肖宇,肖明慧,等.磁性水滑石/生物炭复合材料的制备及其对水溶液中磷的吸附性能[J].环境污染与防治,2020,42(9):1090-1095,1101. [42] 陈泳,王时雨,康桂英.凹凸棒负载Zn-Al-La类水滑石对磷的吸附[J].兰州理工大学学报,2016,42(4):74-79. [43] 耿健,杨盼,唐婉莹.铁改性热处理凹凸棒颗粒对水体磷的去除效果[J].环境工程,2020,38(10):114-119.
点击查看大图
计量
- 文章访问数: 93
- HTML全文浏览量: 15
- PDF下载量: 7
- 被引次数: 0