CARBON EMISSION ANALYSIS OF COLLABORATIVE TREATMENT OF MUNICIPAL ORGANIC SOLID WASTE
-
摘要: 近年来,以市政污泥与餐厨垃圾为代表的城市有机固体废弃物的安全妥善处理和高效低碳处置受到广泛关注。通过构建碳排放及碳补偿核算方法,以100万人口的中等城市为例,分析城市有机固体废弃物协同处置与传统焚烧和填埋处置的理论碳排放水平。通过量化直接碳排放与间接碳排放的贡献,确定了高效的减排路径。结果表明:城市有机固废协同处置碳排放量为513t CO2/a,相比于传统填埋(12973t CO2/a)和传统焚烧(14733t CO2/a)碳减排效益显著。协同处置技术路线中直接碳排放占比63%,最大限度实现沼气和发酵产物的资源化利用是碳减排的关键。焚烧处置路径中的焚烧电耗(占比68%)和填埋处置路径中的深度脱水药耗(占比87%)是间接碳排放的主要来源,也是碳减排的核心。该研究结果可为城市有机固体废弃物低碳化处理处置提供参考,从而助力城市实现碳中和目标。Abstract: In recent years, the safe and low-carbon treatment and disposal of municipal organic solid waste, such as municipal sludge and kitchen waste, has garnered significant attention. This study establishes an accounting methodology for carbon emissions and compensation by using a medium-sized city with a population of 1 million as a case study. Theoretical carbon emission levels for collaborative treatment, traditional incineration, and landfill pathways are analyzed to determine efficient emission reduction strategies through quantifying the contributions of direct and indirect carbon emissions. The results demonstrate that collaborative treatment of municipal organic solid waste yields significantly lower carbon emissions(513 t CO2/year) compared to traditional landfills(12973 t CO2/year) or traditional incineration(14733 t CO2/year). Direct carbon emissions in the collaborative disposal process account for 63%, emphasizing the importance of maximizing resource utilization through biogas production and fermentation products for effective carbon reduction. Indirect carbon emissions during incineration and landfill processes primarily stem from power consumption during incineration(68%) and deep dehydration agent usage during landfill disposal(87%), highlighting these areas as crucial focal points for reducing the overall carbon footprint. This study's findings provide valuable insights into low-carbon approaches towards treating municipal organic solid waste while aiding cities in achieving their goals of attaining carbon neutrality.
-
[1] WANG S,BAI X,ZHANG X,et al.Urbanization can benefit agricultural production with large-scale farming in China[J].Nature Food,2021,2(3):183-191. [2] 中华人民共和国住房和城乡建设部.2021年城市建设统计年鉴[G].2022. [3] 赵刚,唐建国,徐竟成,等.中美典型污泥处理处置工程能耗和碳排放比较分析[J].环境工程,2022,40(12):9-16. [4] 王桂琴,张红玉,王典,等.北京市城区生活垃圾组成及特性分析[J].环境工程,2018,36(4):132-136. [5] 王昱琛,宿程远,丁凤秀,等.厌氧共消化低碳处理餐厨垃圾与剩余污泥的现状与展望[J].广西师范大学学报(自然科学版),2022,40(5):406-417. [6] 郝晓地,周鹏,曹达啓.餐厨垃圾处置方式及其碳排放分析[J].环境工程学报,2017,11(2):673-682. [7] GUO Q,DAI X.Analysis on carbon dioxide emission reduction during the anaerobic synergetic digestion technology of sludge and kitchen waste:taking kitchen waste synergetic digestion project in Zhenjiang as an example[J].Waste Manag,2017,69(11):360. [8] 陈文昊,袁辉洲,柯水洲,等.厨余垃圾资源化处置方式的碳补偿与能源回收潜力对比分析[J].环境工程,2023,41(7):37-44. [9] 夏雪,邵钱祺,曹悦,等.不同处理模式下污泥厌氧消化的能源回收与碳排放分析[J].环境工程,2023,41(7):1-7,13. [10] CERDA,ALEJANDRA,ARTOLA,et al.Composting of food wastes:status and challenges[J].Bioresource Technology Biomass Bioenergy Biowastes Conversion Technologies Biotransformations Production Technologies,2018. [11] LIN L,XU F,Ge X,et al.Improving the sustainability of organic waste management practices in the food-energy-water nexus:a comparative review of anaerobic digestion and composting[J].Renewable and Sustainable Energy Reviews,2018,89(JUN.):151-167. [12] JIN Z,LU T,FENG W,et al.Changes and composition of microbial community during aerobic composting of household food waste[J].Cold Spring Harbor Laboratory,2021. [13] 潘亚红.微生物菌剂强化餐厨垃圾及污泥好氧发酵分析[D].北京:北京建筑大学,2022. [14] YI S,JIUPING X.A multi-objective approach to kitchen waste and excess sludge co-digestion for biomethane production with anaerobic digestion[J].Energy,2023,262:125243. [15] IPCC.2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventory[R].2019. [16] 刘洪涛,陈同斌,杭世珺,等.不同污泥处理与处置工艺的碳排放分析[J].中国给水排水,2010,26(17):106-108. [17] 次瀚林,王先恺,董滨.不同污泥干化焚烧技术路线全链条碳足迹分析[J].净水技术,2021,40(6):77-82,99. [18] 中华人民共和国国家统计局人口和就业统计司.中国人口和就业统计年鉴2021[G].2022.
点击查看大图
计量
- 文章访问数: 227
- HTML全文浏览量: 23
- PDF下载量: 15
- 被引次数: 0