HEAT TRANSFER SIMULATION AND ENERGY ANALYSIS OF RADIATIVE PYROLYSIS OF OILY SLUDGE
-
摘要: 油泥辐射热解过程复杂,热解炉内温度场和传热特性不明等,通过Fluent软件,选用双欧拉模型、DO辐射模型及多组分模型研究了热解炉内的温度分布及不同因素下物料的升温特性。结果表明,炉内油泥的温度分布以L/D=10为分界点将其分为了升温和恒温2个阶段,且600℃为最佳热解终温。同时,较高的含水率会延长油泥热解时间,而降低螺旋转速可减少最终油泥的剩余量。另外,在辐射管上方加装遮热板可改善炉膛温度分布的均匀性。最后,对整个热解系统进行能量平衡分析发现,热解产物总回收能量为6592.25 kJ,能量回收率最高可达82%,其中热解气能量占该系统总输入能量的65.78%~90.11%,可极大减少系统所需的外部能量补给。Abstract: Aiming at the complexity of oily sludge radiation pyrolysis, the temperature field and heat transfer characteristics inside the pyrolysis furnace are unknown. The temperature distribution inside the pyrolysis furnace and the heating characteristics of the materials under different factors were investigated by Fluent software, using double Eulerian model, DO radiation model and multi-component model. The results indicate that the temperature distribution of the sludge in the furnace was divided into two stages of heating and constant temperature with the cut-off point of L/D=10, and 600 ℃ was the optimal pyrolysis final temperature. Meanwhile, higher water content prolongs the sludge pyrolysis time, while lowering the screw speed reduces the amount of final sludge remaining. In addition, setting a heat shield above the radiation tube can significantly improve the uniformity of the entire furnace temperature distribution. Finally, the total recovered energy of the pyrolysis products was 6592.25 kJ through the energy balance analysis of the whole pyrolysis system, with a maximum energy recovery rate of 82%. Among them, the pyrolysis gas energy accounts for 65.78%~90.11% of the total energy input of the system, which can greatly reduce the external energy supply required by the system.
-
Key words:
- oily sludge /
- radiation pyrolysis /
- numerical simulation /
- temperature distribution /
- energy recover
-
[1] HUI K,TANG J,LU H,et al.Status and prospect of oil recovery from oily sludge:a review[J].Arabian Journal of Chemistry,2020,13(8):6523-6543. [2] 高华鑫.含油污泥中温热解炉开发及仿真研究[D].常州:常州大学,2022. [3] OSSAI I C,AHMED A,HASSAN A,et al.Remediation of soil and water contaminated with petroleum hydrocarbon:a review[J].Environmental Technology & Innovation,2020,17. [4] LI J,LIN F,LI K,et al.A critical review on energy recovery and non-hazardous disposal of oily sludge from petroleum industry by pyrolysis[J].Journal of Hazardous Materials,2021,406:124706. [5] 宋旸.含油污泥深度处理热解数值模拟仿真及其应用研究[D].大庆:东北石油大学,2022. [6] 林法伟,郑发,李建陶,等.大庆多源含油污泥热解特性的对比[J].化工进展,2021,40(S2):421-433. [7] 杨欣镭.含油污泥热解特性及添加剂对热解油影响研究[D].北京:北京化工大学,2022. [8] 李锋,孙建宅,邱迪,等.储罐含油污泥热解工艺参数优化实验[J].油气田地面工程,2022,41(8):47-53. [9] WANG Z,GONG Z,WANG Z,et al.A TG-MS study on the coupled pyrolysis and combustion of oil sludge[J].Thermochimical Acta,2018,663:137-144. [10] GONG Z,DU A,WANG Z,et al.Experimental study on pyrolysis characteristics of oil sludge with a tube furnace reactor[J].Energy & Fuels,2017,31(8):8102-8108. [11] SONG Z L,XU B L,XU C,et al.Effect of additives on the distribution of three-phase products of oily sludge subjected to microwave pyrolysis[J].Journal of Environmental Science and Health Part A-toxic/hazardous Substances & Environmental Engineering,2021,56(13):1445-1455. [12] JIN X X,TENG D Y,FANG J,et al.Petroleum oil and products recovery from oily sludge:characterization and analysis of pyrolysis products[J].Environmental Research,2021,202:111675. [13] 任清华.流体载热远红外气相辐射加热特性的研究[D].天津:天津大学,2008. [14] 方堃,任清华,阮炯明,等.流体载热远红外气相辐射加热效果及影响因素研究[J].安全与环境学报,2015,15(5):262-265. [15] 徐宝林.基于辐射加热的油泥热解特性研究[D].济南:山东大学,2024. [16] 杨淑清,郑贤敏,王北福,等.临港含油污泥的热解动力学分析[J].化工学报,2015,66(增刊1):319-325. [17] 刘彤,马跃,岳长涛.含油污泥热解及传热特性研究现状[J].应用化工,2022,51(9):2675-2680. [18] 孟凡玉.含油污泥热解的预处理效能及其热解性能研究[D].哈尔滨:哈尔滨商业大学,2022. [19] 段一航,高宁博,全翠.水热处理对含油污泥热解特性及动力学影响[J].化工进展,2023,42(2):603-613. [20] SHI X,RONSSE F,ROEGIERS J,et al.3D Eulerian-Eulerian modeling of a screw reactor for biomass thermochemical conversion.Part 1:solids flow dynamics and back-mixing[J].Renewable Energy,2019,143:1465-1476. [21] MA Z,GAO N,ZhANG L,et al.Modeling and simulation of oil sludge pyrolysis in a rotary kiln with a solid heat carrier:considering the particle motion and reaction kinetics[J].Energy & Fuels,2014,28(9):6029-6037. [22] GAO N B,JIA X Y,GAO G Q,et al.Modeling and simulation of coupled pyrolysis and gasification of oily sludge in a rotary kiln[J].Fuel,2020,279. [23] QI F,WRIGHT M M.A DEM modeling of biomass fast pyrolysis in a double auger reactor[J].International Journal of Heat and Mass Transfer,2020,150. [24] 詹咏,张领军,谢加才等.热解终温对含油污泥三相产物特性的影响[J].环境工程学报,2021,15(7):2409-2416. [25] 马蒸钊.含油污泥回转窑热固载体热解特性研究[D].大连:大连理工大学,2015. [26] 王静静.含油污泥热解动力学及传热传质特性研究[D].青岛:中国石油大学(华东),2013. [27] 刘颖,杜卫东,程泽生等.含油污泥热解的影响因素初探[J].油气田环境保护,2010,20(2):7-9,28,60. [28] 吕旭.微波强化炼厂含油污泥破乳脱水试验研究[D].济南:山东大学,2020. [29] 解强,梁鼎成,何璐,等.TG-DSC同步联用测定煤热解反应热[J].煤炭学报,2017,42(2):538-546. [30] 汪建新,胡依景,吴启明,等.加热炉辐射管的技术进化路线分析[J].金属热处理,2014,39(10):137-140. [31] 宋薇,岳东北,刘建国,等.铝塑包装废物热解过程能量平衡分析[J].环境工程学报,2012,6(1):307-310. [32] 胡艳军,郑小艳,宁方勇.污水污泥热解过程的能量平衡与反应热分析[J].动力工程学报,2013,33(5):399-404.
点击查看大图
计量
- 文章访问数: 106
- HTML全文浏览量: 19
- PDF下载量: 6
- 被引次数: 0