EFFECT OF GRANULAR ACTIVATED CARBON ON WASTEWATER TREATMENT PERFORMANCE AND DYNAMIC MEMBRANE PROPERTIES IN AN AnDMBR
-
摘要: 构建了颗粒活性炭(GAC)强化型厌氧动态膜生物反应器(AnDMBR),考察了GAC投加量(3,6,10,20 g/L)对工艺的过滤性能、污染物去除、产甲烷性能以及动态膜性质的影响,探究了GAC的物化和生物强化作用。研究结果表明,与未投加GAC相比,随着投加GAC浓度的增大,浊度去除率分别提高了3.1~12.3百分点,COD去除率分别提高了5.7~12.1百分点,GAC投加量越大对污染物去除的贡献越大。与未投加GAC相比,随着投加GAC浓度的增大,甲烷总产率分别提高了23.7%、34.6%、24.2%、8.3%,最佳GAC投加量为6 g/L。投加GAC改善了AnDMBR的污染物去除性能和产甲烷性能。GAC的投加有利于降低厌氧污泥和动态膜中EPS的含量,削减出水中荧光性溶解性有机物的含量,减小跨膜压差(TMP)的增长率。同时GAC的吸附与生物富集效应可形成生物活性炭,增大污泥粒径,改善污泥性质和动态膜的多孔结构,对AnDMBR的长期运行起到了积极作用。
-
关键词:
- 厌氧动态膜生物反应器 /
- 颗粒活性炭 /
- 生活污水 /
- 过滤性能 /
- 污泥性质
Abstract: In this paper, a granular activated carbon(GAC) enhanced anaerobic dynamic membrane bioreactor(AnDMBR) was constructed. To explore the physicochemical and biological effects of GAC addition on the AnDMBR, the impact of different GAC dosages(3, 6, 10, 20 g/L) on the filtration performance, pollutants removal, methane production and the characteristics of anaerobic sludge and dynamic membrane was investigated. The results showed that, compared to the control reactor without GAC addition, the turbidity removal increased by 3.1 to 12.3 percentage points, and the COD removal increased by 5.7 to 12.1 percentage points. The higher the GAC dosage, the greater the contribution to pollutant removal. Compared to the control reactor without GAC addition, the total methane yield increased by 23.7%, 34.6%, 24.2%, and 8.3%, respectively, with the optimal GAC dosage of 6 g/L for enhanced methane production. Adding GAC can improve the pollutant removal performance and the methanogenesis of the AnDMBR. The supplementation of GAC can reduce the content of extracellular polymeric substances(EPS) in the anaerobic sludge and dynamic membrane as well as the content of all fluorescent dissolved organic matter in the effluent, leading to a decreased growth rate of transmembrane pressure(TMP). GAC could adsorb and enrich biomass to form biological activated carbon, which increased the particle size of anaerobic sludge, modified sludge characteristics, and enhanced the porous structure of the cake layer. These features played a positive role in the long-term stable operation of the AnDMBR. -
[1] HU Y,WANG X C,NGO H H,et al.Anaerobic dynamic membrane bioreactor (AnDMBR) for wastewater treatment:a review[J].Bioresource Technology.2018,247:1107-1118. [2] 臧颖.零价铁强化浓缩污水厌氧消化产甲烷的性能与机理研究[D].西安:西安建筑科技大学,2020. [3] HU Y,YANG Y,YU S,et al.Psychrophilic anaerobic dynamic membrane bioreactor for domestic wastewater treatment:effects of organic loading and sludge recycling[J].Bioresource Technology,2018,270:62-69. [4] 刘萍,张吉强.固定化溶藻菌除藻效果研究[J].环境工程,2016,34(12):28-31. [5] YANG Y,ZANG Y,HU Y,et al.Upflow anaerobic dynamic membrane bioreactor (AnDMBR) for wastewater treatment at room temperature and short HRTs:process characteristics and practical applicability[J].Chemical Engineering Journal,2020,383:123186. [6] 黄刚华,尤朝阳,李旋,等.投加物质对减缓MBR膜污染的研究[J].水处理技术,2013,39(9):10-14. [7] DANG H,YU N,MOU A,et al.Metagenomic insights into direct interspecies electron transfer and quorum sensing in blackwater anaerobic digestion reactors supplemented with granular activated carbon[J].Bioresource Technology,2022,352:127113. [8] EVANS P J,PARAMESWARAN P,LIM K,et al.A comparative pilot-scale evaluation of gas-sparged and granular activated carbon-fluidized anaerobic membrane bioreactors for domestic wastewater treatment[J].Bioresource Technology,2019,288:120949. [9] 李健.活性炭投加对厌氧动态膜生物反应器的性能强化和机理研究[D].济南:山东大学,2020. [10] DING A,LIANG H,QU F,et al.Effect of granular activated carbon addition on the effluent properties and fouling potentials of membrane-coupled expanded granular sludge bed process[J].Bioresource Technology,2014,171(1):240-246. [11] JIAO C,HU Y,ZHANG X,et al.Process characteristics and energy self-sufficient operation of a low-fouling anaerobic dynamic membrane bioreactor for up-concentrated municipal wastewater treatment[J].Science of the Total Environment,2022,843:156992. [12] 国家环境保护总局.水和废水监测分析方法[M].4版.北京:中国环境科学出版社,2002. [13] HU Y,DU R,NITTA S,et al.Identification of sustainable filtration mode of an anaerobic membrane bioreactor for wastewater treatment towards low-fouling operation and efficient bioenergy production[J].Journal of Cleaner Production,2021,329:129686. [14] 李静,张宝刚,刘青松,等.导电材料强化微生物直接种间电子传递产甲烷的研究进展[J].微生物学报,2021,61:1507-1524. [15] PARK J H,PARK J H,SEONG H J,et al.Metagenomic insight into methanogenic reactors promoting direct interspecies electron transfer via granular activated carbon[J].Bioresource Technology,2018,259:414-422. [16] 张肖艺.厌氧正渗透膜生物反应器能量回收和溶解性气体传质性能研究[D].大连:大连理工大学,2019. [17] CRONE B C,GARLAND J L,SORIAL G A,et al.Significance of dissolved methane in effluents of anaerobically treated low strength wastewater and potential for recovery as an energy product:a review[J].Water Research,2016,104:520-531. [18] SMITH A L,STADLER L B,LOVE N G,et al.Perspectives on anaerobic membrane bioreactor treatment of domestic wastewater:a critical review[J].Bioresource Technology,2012,122:149-159. [19] ERSAHIN M E,OZGUN H,TAO Y,et al.Applicability of dynamic membrane technology in anaerobic membrane bioreactors[J].Water Research,2014,48(1):420-429. [20] YANG Y,DENG W,HU Y,et al.Gravity-driven high flux filtration behavior and microbial community of an integrated granular activated carbon and dynamic membrane bioreactor for domestic wastewater treatment[J].Science of the Total Environment,2022,825:153930. [21] LEE J,KWON D,KIM J.Long-term performance evaluation of granular activated carbon fluidization and biogas sparging in anaerobic fluidized bed membrane bioreactor:membrane fouling and micropollutant removal[J].Process Safety and Environmental Protection,2021,154:425-432. [22] YU Z,HU Y,DZAKPASU M,et al.Dynamic membrane bioreactor performance enhancement by powdered activated carbon addition:evaluation of sludge morphological,aggregative and microbial properties[J].Journal of Environmental Sciences (China),2019,75:73-83. [23] ZHANG Y,GUO B,ZHANG L,et al.Microbial community dynamics in granular activated carbon enhanced UASB treating municipal sewage under sulfate reducing and psychrophilic conditions[J].Chemical Engineering Journal,2021,405:126957. [24] HU Y,WANG X C,TIAN W,et al.Towards stable operation of a dynamic membrane bioreactor (DMBR):operational process,behavior and retention effect of dynamic membrane[J].Journal of Membrane Science,2016,498:20-29. [25] 丛者禹.厌氧微生物的营养元素:氮和磷对甲烷细菌生存环境影响的探讨[J].环境科学动态,2000:31-36. [26] 杨媛.两级动态膜反应器污水浓缩和厌氧发酵产能工艺特性研究[D].西安:西安建筑科技大学,2021. [27] JOHIR M A H,ARYAL R,VIGNESWARAN S,et al.Influence of supporting media in suspension on membrane fouling reduction in submerged membrane bioreactor (SMBR)[J].Journal of Membrane Science,2011,374:121-128. [28] 臧颖,胡以松,杨媛,等.投加零价铁对AnDMBR处理预浓缩污水的影响研究[J].水处理技术,2021,47:91-95. [29] 凌琪,张贤芳,伍昌年,等.投加改性粉煤灰和PAC对MBR运行效果的影响对比[J].中国给水排水,2015,31(11):93-96. [30] 文雯.活性炭投加对厌氧膜生物反应器甲烷发酵和膜污染控制效能的影响研究[D].西安:西安建筑科技大学,2019. [31] 张贤芳.颗粒物/壳聚糖协同控制动态膜生物反应器膜污染的研究[D].合肥:安徽建筑大学,2016. [32] HU Y,YANG Y,WANG X C,et al.Effects of powdered activated carbon addition on filtration performance and dynamic membrane layer properties in a hybrid DMBR process[J].Chemical Engineering Journal,2017,327:39-50. [33] WILÉN B M,JIN B,LANT P.The influence of key chemical constituents in activated sludge on surface and flocculating properties[J].Water Research,2003,37(9):2127-2139. [34] HU A Y,STUCKEY D C.Activated carbon addition to a submerged anaerobic membrane bioreactor:effect on performance,transmembrane pressure,and flux[J].Journal of Environmental Engineering,2007,133(1):73-80. [35] 王金翠,孙宝盛.胞外聚合物与溶解性微生物产物的关系[J].环境科学与技术,2008,31(11):18-20. [36] 尤朝阳,王世和.颗粒活性炭干扰膜表面滤饼层形成的研究[J].中国给水排水,2007,23(17):58-60. [37] MENG F,ZHANG H,YANG F,et al.Characterization of cake layer in submerged membrane bioreactor[J].Environmental Science and Technology,2007,41(11):4065-4070.
点击查看大图
计量
- 文章访问数: 108
- HTML全文浏览量: 24
- PDF下载量: 4
- 被引次数: 0