RESEARCH ON GROUNDWATER NITRATE REDUCTION EFFICIENCY BASED ON METHANOTROPH AND FUNCTIONAL MICROORGANISMS
-
摘要: 地下水中污染物成分复杂,来源广泛,针对地下水中的硝酸盐污染物,利用生物膜反应器,开展了基于甲烷氧化菌的地下水硝酸盐还原效能、功能微生物和代谢途径分析。研究发现,在进水ρ(NO-3-N)为10 mg/L时,系统对硝酸盐的最高去除率达到98.83%,实现硝酸盐的有效去除。通过溶解性有机物(dissolved organic matter, DOM)组分变化分析发现出水中DOM主要是类色氨酸蛋白质类物质。宏基因组分析结果表明,生物膜反应器甲烷氧化系统中的好氧甲烷氧化菌主要为Methylocystis(5.25%)、Methylomonas(2.73%),厌氧甲烷氧化菌主要为Methylomirabilis(0.0016%)、Methanoperedens(0.0016%),硝酸盐还原菌主要为Lysobacter(9.72%)、Opitutus(2.74%)、Hyphomicrobium(2.01%)。利用KEGG数据库对系统中微生物的功能进行注释,识别出多种相关功能基因(40种甲烷代谢相关的功能基因和19种氮代谢相关的功能基因)以及较完善的甲烷代谢通路(5条)和氮代谢通路(6条),证明甲烷氧化菌具有部分反硝化的能力,对硝酸盐具有良好的选择性。相关研究结果可为硝酸盐污染地下水修复提供技术支撑和理论依据。Abstract: Pollutants in groundwater are complicated from many sources, and nitrate pollutants are one of them. In this study, a methanotroph-based biofilm reactor was established to find a remediation method with low consumption, high efficiency, and no secondary pollutants, by assaying nitrate reduction efficiency, functional microorganisms, and metabolic pathway.Results showed that the maximum nitrate removal rate reached 98.83% when nitrate nitrogen concentration in the influent was 10 mg/L. DOM component changes found that the dissolved organic matter primarily was a tryptophan-like protein. Macrogenomic analysis revealed that the dominant aerobic methanotrophs in this biofilm reactor were Methylocystis(5.25%) and Methylomonas(2.73%); the dominant anaerobic methanotrophs were Methylmirabilis(0.0016%), and Methanoperedens(0.0016%); and the dominant nitrate-reducing bacteria were mainly Lysobacter(9.72%), Opitutus(2.74%), and Hypomicrobium(2.01%). The KEGG database was annotated to identify microbial functions in the system, including 40 methane-metabolism-related functional genes and 19 nitrogen-metabolism-related functional genes, as well as 5 relatively complete methane metabolism pathways and 6 nitrogen metabolism pathways. Thus, methanogens could be proved with the capability of partial denitrification and good selectivity for nitrate. Relevant research results can provide technical support and a theoretical basis for the remediation of nitrate-contaminated groundwater.
-
Key words:
- methane oxidizing bacteria /
- groundwater /
- nitrate /
- metagenomics /
- functional microorganism
-
[1] PENG L,LIU Y W,GAO S H,et al.Evaluation on the nanoscale zero valent iron based microbial denitrification for nitrate removal from groundwater[J].Scientific Reports,2015,5(1).doi: 10.1038/srep12331. [2] 李冬丽,贺海波.西南喀斯特地区水体硝态氮时空分布特征及其来源解析[J].地球化学,2022,51:34-45. [3] YU G M,WANG J,LIU L,et al.The analysis of groundwater nitrate pollution and health risk assessment in rural areas of Yantai,China[J].BMC Public Health,2020,20 (1).doi: 10.1186/s12889-020-08583-y. [4] 茹淑华,张国印,孙世友,等.地下水硝酸盐污染总体状况及时空变异规律[J].农业资源与环境学报,2013,30:48-52. [5] HU Y S,WU G X,LI R H,et al.Iron sulphides mediated autotrophic denitrification:an emerging bioprocess for nitrate pollution mitigation and sustainable wastewater treatment[J].Water Research,2020,179.doi: 10.1016/j.watres.2020.115914. [6] F D.E.Resolving a methane mystery[J].Nature,2000,407:577-579. [7] 姜怡如,高峥,李明聪.水生生态系统中金属依赖型甲烷厌氧氧化过程的研究进展[J].微生物学通报,2020,47(10):3318-3328. [8] STEIN L Y,KLOTZ M G.Nitrifying and denitrifying pathways of methanotrophic bacteria[J].Biochemical Society Transactions,2011,39:1826-1831. [9] FERNANDES C,GONSALVES M,NAZARETH D R,et al.Microbial iron reduction and methane oxidation in subsurface sediments of the Arabian Sea[J].Marine and Petroleum Geology,2015,67:327-335. [10] ETTWIG K F,BUTLER M K,LE PASLIER D,et al.Nitrite-driven anaerobic methane oxidation by oxygenic bacteria[J].Nature,2010,7288(464):543. [11] A R A,ARJAN P,van de PAS-SCHOONEN KATINKA T,et al.A microbial consortium couples anaerobic methane oxidation to denitrification[J].Nature,2006,440:918-921. [12] DIMITRI K K,G K M,Y S L.Methane oxidation coupled to nitrate reduction under hypoxia by the Gammaproteobacterium Methyloonas denitrificans,sp.nov.type strain FJG1[J].Environmental Microbiology,2015,17:3219-3232. [13] 谢婷.基于厌氧甲烷氧化的生物反硝化和高氯酸盐还原机制及微生物群落研究[D].长沙:湖南大学,2019. [14] 熊民莉.利用甲烷基质膜生物膜反应器高效去除水中硝酸盐的可行性研究[D].哈尔滨:哈尔滨工业大学,2021. [15] SUN F Y,DONG W Y,SHAO M F,et al.Aerobic methane oxidation coupled to denitrification in a membrane biofilm reactor:treatment performance and the effect of oxygen ventilation[J].Bioresource Technology,2013,145:2-9. [16] CHEN W,PAUL W,JERRY L,et al.Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter[J].Environmental Science & Technology,2003,37(24):5701-5710. [17] LI R,LI Y,KRISTIANSEN K,WANG J.SOAP:short oligonucleotide alignment program[J].Bioinformatics,2008;24(5):713-714. [18] 蔡力童,李青松,马晓雁,等.基于3D-EEMs和DOM分离组分的某市水源水荧光特征及THMsFP、HAcAmsFP研究:以南方某市水源水为例[J].中国环境科学,2022,42:1745-1753. [19] 张翰林,白娜玲,郑宪清,等.秸秆还田与施肥方式对稻麦轮作土壤细菌和真菌群落结构与多样性的影响[J].中国生态农业学报(中英文),2021,29:531-539. [20] YANG C,ZHANG W,LIU R H,et al.Phylogenetic diversity and metabolic potential of activated sludge microbial communities in full-scale wastewater treatment plants[J].Environmental Science & Technology,2011,45(17):7408-7415. [21] GABARRO J,HERNANDEZ-DEL AMO E,GICH F,et al.Nitrous oxide reduction genetic potential from the microbial community of an intermittently aerated partial nitritation SBR treating mature landfill leachate[J].Water Research,2013,47(19):7066-7077. [22] XU G,PENG J,FENG C,et al.Evaluation of Simultaneous Autotrophic and heterotrophic denitrification processes and bacterial community structure analysis[J].Applied Microbiology and Biotechnology,2015,99(15):6527-6536. [23] FUKUSHIMA T,WHANG L M,CHEN P C,et al.Linking TFT-LCD wastewater treatment performance to microbial population abundance of hyphomicrobium and thiobacillus spp[J].Bioresour Technol,2013,141:131-137. [24] ZHANG H,MA B,HUANG T L,et al.Nitrogen removal from low carbon/nitrogen polluted water is enhanced by a novel synthetic micro-ecosystem under aerobic conditions:novel insight into abundance of denitrification genes and community interactions[J].Bioresource Technology,2022,351.doi: 10.1016/J.BIORTECH.2022.127013. [25] 张坚超,徐镱钦,陆雅海.陆地生态系统甲烷产生和氧化过程的微生物机理[J].生态学报,2015,35(20):6592-6603. [26] J C K,W L,H J P.Opitutus terrae gen.nov.,sp.nov.,to accommodate novel strains of the division 'Verrucomicrobia' isolated from rice paddy soil[J].International Journal of Systematic And Evolutionary Microbiology,2001,51(Pt 6).doi: 10.1099/00207713-51-6-1965. [27] KLEIN V J,IRLA M,GIL LÓPEZ M,et al.Fernandes brito luciana.unravelling formaldehyde metabolism in bacteria:the road towards synthetic methylotrophy[J].Microorganisms,2022,10(2).doi: 10.3390/microorganisms10020220. [28] J S P,S X,P C W.Methane as a resource:can the methanotrophs add value?[J].Environmental Science & Technology,2015,49(7):4001-4018. [29] SEDLACEK C J,GIGUERE A T,DOBIE M D,et al.Ranscriptomic response of Nitrosomonas europaea transitioned from ammonia-to oxygen-limited steady-state growth[J].Msystems,2020,5(1).doi: 10.1128/msystems.00562-19. [30] LU J J,SHEN Q,LI X Y,et al.Surface-manipulated membranes to accelerate biofilm formation and to resist bacterial detachment in MBfR for aerobic methane oxidation coupled to denitrification[J].Chemical Engineering Journal,2022,430(P1).doi: 10.1016/j.cej.2021.132629.
点击查看大图
计量
- 文章访问数: 71
- HTML全文浏览量: 8
- PDF下载量: 4
- 被引次数: 0