EMISSION CHARACTERISTICS AND CONTROL SUGGESTIONS OF COLORED SMOKE PLUMES FROM COAL-FIRED POWER PLANTS AND IRON AND STEEL PLANTS' SINTERING PROCESSES
-
摘要: 超低排放改造后,电力和钢铁行业常规大气污染物排放量大幅削减,非常规污染物及有色烟羽问题逐步引起关注,视觉污染及“脱白”问题一时成为讨论的焦点。基于国内外相关标准方法,对3家燃煤电厂和2家钢铁厂烧结机机头烟气总排口处的SO3、NH3、可过滤颗粒物(FPM)和可凝结颗粒物(CPM)的排放水平进行测试,评估超低排放实施效果和有色烟羽治理的可行性。结果表明,3家燃煤电厂和2家钢铁厂烧结烟气SO3、NH3和FPM的排放浓度分别为0.11~1.61,0.02~1.66,0.81~5.76 mg/Nm3,均处于较低水平,其中FPM排放浓度均能够满足超低排放要求,实施烟气“脱白”改造后SO3和NH3排放浓度与同行业相比均有显著下降,但减排效果较为有限。3家燃煤电厂和2家钢铁厂烧结烟气中CPM排放浓度分别为3.39~4.82,26.6~29.1 mg/Nm3,其中钢铁厂CPM排放浓度处于较高水平,约为颗粒物超低排放限值的3倍,CPM/总颗粒物(TPM)达到97%左右。无论是燃煤电厂和还是钢铁厂,新增“脱白”技术后并不一定能够显著降低CPM排放水平,因此,超低排放改造后再增加“脱白”改造的可行性值得深思。此外,燃煤电厂和钢铁厂烧结烟气颗粒物在线监测结果均处于较低水平,且远低于手工监测测得的TPM排放浓度,现有在线监测数据由于不包括CPM,因而在评价烟气中颗粒物达标排放情况时存在一定局限性和不确定性,亟需完善现有固定源烟气中颗粒物的测量体系和排放标准体系,以控制CPM排放水平。Abstract: After the ultra-low emission renovation, the conventional air pollutant emissions from the power and steel industries have been significantly reduced. The new problem caused by unconventional pollutants and colored plumes has gradually attracted people's attention for its visual appearance and "de-whitening" problem for a long time. Based on relevant domestic and international standards and methods, the emission levels of SO3, NH3, filterable particulate matter(FPM), and condensable particulate matter(CPM) at the main exhaust ports in three coal-fired power plants and the sintering machine heads of two iron and steel plants were tested to evaluate the effectiveness of ultra-low emission implementation and the feasibility of colored smoke plume control. The results showed that the emission concentrations of SO3, NH3 and FPM from three coal-fired power plants and sintering flue gas of the two steel plants were 0.11 mg/Nm3 to 1.61 mg/Nm3, 0.02 mg/Nm3 to 1.66 mg/Nm3, and 0.81 mg/Nm3 to 5.76 mg/Nm3, respectively, which were all at a low level, and the emission concentrations of FPM could all meet the ultra-low emission requirements. After implementing the flue gas "de-whitening" transformation, the emission concentrations of SO3 and NH3 from coal-fired power plants or iron and steel plants' sintering processes decreased significantly, but the emission reduction effect was limited. The CPM emission concentrations from three coal-fired power plants and two steel plants' sintering processes were 3.39 mg/Nm3 to 4.82 mg/Nm3 and 26.6 mg/Nm3 to 29.1 mg/Nm3, respectively. The latter was at a higher level, about 3 times the ultra-low emission limit of particulate matter, and about 32 times of FPM emission concentration, and the CPM/total particulate matter(TPM) reached about 97%. Whether in coal-fired power plants or steel plants, applying "de-whitening" technology might not necessarily significantly reduce CPM emissions. Therefore, the feasibility of adding "whitening" transformation after ultra-low emission transformation is worth pondering. In addition, the online monitoring results of particulate matter in coal-fired power plants and iron and steel plants were both at a relatively low level, and far lower than the TPM emission concentrations measured by manual monitoring. The existing online monitoring data, which does not include CPM, has certain limitations and uncertainties in evaluating the particulate matter emissions in flue gas meeting the standard. Hence, it is urgent to improve the existing measurement system and emission standard system of particulate matter in stationary pollution sources to control the emissions of CPM.
-
[1] 屈加豹,王鹏,伯鑫,等.超低改造下中国火电排放清单及分布特征[J].环境科学,2020,41(9):3969-3975. [2] BO X,JIA M,XUE X D,et al.Effect of strengthened standards on Chinese ironmaking and steelmaking emissions[J].Nature Sustainability,2021,4(9):811-820. [3] ZHANG Q,ZHENG Y X,TONG D,et al.Drivers of improved PM2.5 air quality in China from 2013 to 2017[J].Proceedings of the National Academy of Sciences,2019,116(49):24463-24469. [4] 李文华,吴贤豪,陈彪,等.超低排放燃煤机组SO3和NH3生成及迁移规律研究[J].浙江电力,2021,40(8):91-95. [5] 钟洪玲,陈鸥,王洪亮,等.超低排放下燃煤电厂氨排放特征[J].环境科学研究,2021,34(1):124-131. [6] LI M Y,YU S C,CHEN X,et al.Impacts of condensable particulate matter on atmospheric organic aerosols and fine particulate matter (PM2.5) in China[J].Atmospheric Chemistry and Physics,2022,22(17):11845-11866. [7] 张莹,邓建国,王刚,等.典型钢铁焦化厂可凝结颗粒物排放特征[J].环境工程,2020,38(9):154-158,125. [8] 朱法华,李军状.我国燃煤电厂SO3和可凝结颗粒物控制存在问题与建议[J].环境影响评价,2019,41(3):1-5. [9] 朱法华,孙尊强,申智勇.超低排放燃煤电厂有色烟羽成因及治理技术的经济与环境效益研究[J].中国电力,2019,52(8):1-7,25. [10] 赵毅,韩立鹏.超低排放燃煤电站三氧化硫的迁移和排放特征[J].环境科学学报,2019,39(11):3702-3708. [11] 徐雯,程俊峰,董长青,等.燃煤电厂有色烟羽治理政策和技术现状[J].电站系统工程,2020,36(1):8-12,24. [12] SHANG D J,PENG J F,GUO S,et al.Secondary aerosol formation in winter haze over the Beijing-Tianjin-Hebei Region,China[J].Frontiers of Environmental Science & Engineering,2020,15(2):34. [13] 郑成强,李小龙,李军状,等.燃煤电厂逃逸氨迁移转化特性研究进展[J].化工进展,2022,41(2):964-973. [14] 黄举福.燃煤电厂有色烟羽治理技术及应用研究[D].杭州:浙江大学,2020. [15] 赵宏,张发捷,马云龙,等.燃煤电厂SCR脱硝氨逃逸迁移规律试验研究[J].中国电力,2021,54(1):196-202. [16] 李小龙,朱法华,段玖祥,等.600MW燃煤机组逃逸氨迁移规律与排放特性[J].中国电机工程学报,2021,41(19):6560-6569. [17] LI J W,QI Z F,LI M,et al.Physical and chemical characteristics of condensable particulate matter from an ultralow-emission coal-fired power plant[J].Energy & Fuels,2017,31(2):1778-1785. [18] 邓建国,王东滨,刘通浩,等.燃煤电厂和钢铁厂排放可凝结颗粒物中有机组分研究[J].环境工程,2022,40(3):13-17,31. [19] 高境,赵传峰,刘宇,等.有色烟羽分析及可凝结颗粒物管控技术综述[J].环境影响评价,2019,41(3):6-10. [20] 杨柳,张斌,王康慧,等.超低排放路线下燃煤烟气可凝结颗粒物在WFGD、WESP中的转化特性[J].环境科学,2019,40(1):121-125. [21] 王鹏程,袁畅,粱胜文,等.超低排放燃煤电厂中湿式电除尘器对可凝结颗粒物排放特性的影响[J].环境科学,2022,43(4):1808-1813. [22] 袁畅,粱胜文,姚智兵,等.典型的固定源排放可凝结颗粒物中无机组分研究[J].环境科学学报,2022,42(9):401-407. [23] 王春艳,申进朝,谭金峰,等.垃圾焚烧发电厂可凝结颗粒物组分特征研究[J].环境污染与防治,2022,44(8):1068-1073. [24] 王春艳,申进朝,周伟峰,等.建筑陶瓷企业可凝结颗粒物组分特征研究[J].环境污染与防治,2022,44(10):1279-1284,1290. [25] 杨晓阳,王飞,杨凤玲,等.燃煤电厂白色烟羽消除技术现状与展望[J].洁净煤技术,2020,26(2):109-117. [26] 上海市环境保护局,上海市质量技术监督局.燃煤电厂大气污染物排放标准:DB31/963—2016[S].上海,2016:1-2. [27] 浙江省人民政府.燃煤电厂大气污染物排放标准:DB33/2147—2018[S].浙江,2018:3,11-12. [28] 天津市环境保护局,天津市市场和质量监督管理委员会.火电厂大气污染物排放标准:DB12/810—2018[S].天津,2018:3-4. [29] 邯郸市大气污染防治工作领导小组办公室.邯郸市钢铁、焦化、燃煤电厂深度减排攻坚方案[EB/OL].(2018-08-27) [2023-03-29].http://sthj.hd.gov.cn/main/detail/92823. [30] 唐山市大气污染防治工作领导小组办公室.唐山市钢铁、焦化超低排放和燃煤电厂深度减排实施方案[R].(2018-07-04) [2023-03-29]. [31] 冯鹏,李正鸿,刘鹤欣,等.超低排放燃煤电厂中SO3的迁移及脱除特征[J].化工进展,2020,39(11):4660-4667. [32] 国家能源局.燃煤电厂烟气脱硝装置性能验收试验规范:DL/T 260—2012[S].北京:中国电力出版社,2012:1-18. [33] 蒋靖坤,邓建国,王刚,等.固定污染源可凝结颗粒物测量方法[J].环境科学,2019,40(12):5234-5239. [34] 朱法华,李小龙,段玖祥,等.固定污染源排放可凝结颗粒物采样方法综述[J].环境监控与预警,2019,11(3):1-11. [35] 陶雷行,翁杰,李晓峰,等.燃煤烟气超低排放全流程协同削减三氧化硫效果分析[J].中国电力,2018,51(3):177-184. [36] 北京市环境保护局,北京市质量技术监督局.大气污染物综合排放标准:DB11/501—2017[S].北京,2017:5-8. [37] 上海市环境保护局,上海市质量技术监督局.大气污染物综合排放标准:DB31/933—2015[S].上海,2015:6-8. [38] 江苏省生态环境厅,江苏省市场监督管理局.大气污染物综合排放标准:DB32/4041—2021[S].南京,2021:5-6. [39] 江苏省市场监督管理局,江苏省生态环境厅.燃气电厂大气污染物排放标准:DB32/4386—2022[S].南京,2022:2-5. [40] 江苏省市场监督管理局.锅炉大气污染物排放标准:DB32/4385—2022[S].南京,2022:4-7. [41] 沈志刚,李冠华,刘泽宇,等.可凝结颗粒物采样系统的优化设计及实测应用[J].环境工程学报,2021,15(10):3262-3269. [42] 胡月琪,王铮,郭建辉,等.超低排放典型燃烧源颗粒物及水溶性离子排放水平与特征[J].环境科学,2021,42(5):2159-2168. [43] 王春艳,申进朝,周伟峰,等.燃煤电厂CPM排放状况及其环境效应研究[J].轻工学报,2022,37(6):101-109. [44] 赵晓亮,吴昊,刘宇,等.供热厂燃煤烟气可凝结颗粒物排放特征及其在湿法脱硫系统中的转化[J].环境工程学报,2023,17(2):598-605. [45] 陈威祥,李军状,叶兴联,等.低环境温度下固定源可凝结颗粒物测试技术改进与应用[J].电力科技与环保,2022,38(5):372-377.
点击查看大图
计量
- 文章访问数: 106
- HTML全文浏览量: 11
- PDF下载量: 7
- 被引次数: 0