RESEARCH ON CHARACTERISTICS AND REACTIVITY OF VOLATILE ORGANIC COMPOUNDS EMISSION FROM A COKING ENTERPRISE
-
摘要: 研究选取某典型焦化企业,针对活性挥发性有机物(VOCs)组分较多的4套生产装置,酚精制、古马隆、沥青焦和焦油萘,开展装置VOCs排放特征探究。使用苏玛罐对装置VOCs废气进行采集,并通过气相色谱-质谱联用仪(GC-MS)对106种VOCs组分进行定性定量分析,采用最大增量反应活性(MIR)计算各装置VOCs排放对大气中O3生成的贡献。结果表明:1)芳香烃、卤代烃和含氧VOCs(OVOCs)是4套装置的主要特征组分,质量分数之和为92.33%~95.38%。2)4套装置排名前10位的VOCs物种质量分数之和为90.45%~93.46%。其中,苯、丙酮、二氯甲烷、乙醇和甲苯等是焦化企业VOCs排放特征物种。3)4套装置臭氧生成潜势(OFP)值为278.73~426.95μg/m3,顺序为焦油萘装置(426.95μg/m3)>酚精制装置(410.43μg/m3)>沥青焦装置(294.36μg/m3)>古马隆装置(278.73μg/m3)。4)4套装置排名前10位的物种对OFP的贡献率为96.24%~97.97%。苯、甲苯、间/对-二甲苯、乙烯和丙酮等是行业的关键活性物种。5)不同焦化生产装置VOCs排放特征物种不一,对OFP有贡献的活性物种也有所差异。酚精制装置对OFP贡献最大的活性物种为间/对-二甲苯,古马隆和沥青焦装置对OFP贡献最大的活性物种为乙烯,焦油萘装置首要活性物种为甲苯,建议根据研究筛选出的关键活性组分制定具有针对性的VOCs减排策略。控制焦化行业VOCs排放对OFP贡献,应优先考虑采取针对性措施控制不同装置区域特征污染组分的排放,如重点加强活性物料储罐呼吸气的收集处理、注重涉活性物料装置的泄漏检测与修复(LDAR)实施效果等。Abstract: The study selected a typical coking enterprise to carry out the characterization of unit VOCs emissions for four production units with high active volatile organic compounds(VOCs) components, namely, phenol refining, Gumarone, asphalt coke, and tar naphthalene. Unit VOCs exhaust was collected using a Suma tank, and 106 VOCs components were characterized and quantified by gas chromatography-mass spectrometry(GC-MS), and the contribution of each unit's VOCs emission to the generation of O3 in the atmosphere was calculated using the maximum incremental reactivity(MIR). The results showed that: 1) aromatic hydrocarbons, halogenated hydrocarbons, and oxygenated VOCs(OVOCs) were the main featured components of the four units, and the sum of mass fractions accounted for 92.33% to 95.38%. 2) The sum of mass fractions of the top 10 VOCs species ranked by the four units ranged from 90.45 to 93.46%. Among them, benzene, acetone, methylene chloride, ethanol, and toluene were the characteristic species of VOCs emission from coking enterprises. 3) The ozone generation potential(OFP) values of the four units were 278.73 μg/m3 to 426.95 μg/m3, in an order of tar naphthalene unit(426.95 μg/m3)>phenol refining unit(410.43 μg/m3)>asphalt coke unit(294.36 μg/m3)>Gumarone unit(278.73 μg/m3). 4) The contribution of the top 10 species of the four units to OFP ranged from 96.24% to 97.97%. Benzene, toluene, m/p-xylene, ethylene, and acetone were the key active species in the industry. 5) Different coking production units had different species characterizing VOCs emissions, and the active species contributing to OFP varied. The largest active species contributing to OFP from phenol refining unit was m/p-xylene, the largest active species contributing to OFP from Gumarone and asphalt coke unit was ethylene, and the primary active species from tar naphthalene unit was toluene. It is recommended that targeted VOCs emission reduction strategies be formulated based on key active components screened in the study. To control the contribution of VOCs emissions to the OFP in the coking industry, priority should be given to the adoption of targeted measures to control the emissions of characteristic pollutant components in different installation areas, such as focusing on strengthening the collection and treatment of respiratory gases from the storage tanks of reactive materials, and the effectiveness of the implementation of the LDAR in the installations involving reactive materials.
-
Key words:
- coking /
- volatile organic compounds /
- emission characteristics /
- reactivity
-
[1] 牛笑笑,钟艳梅,杨璐,等.2015—2020年中国城市PM2.5-O3复合污染时空演变特征[J].环境科学,2023,44(4):1830-1840. [2] RASHIDI R,KHANIABADI Y O,SICARD P,et al.Ambient PM2.5 and O3 pollution and health impacts in Iranian megacity[J].Stochastic Environmental Research and Risk Assessment:Research Journal,2022. [3] 邵平,辛金元,安俊琳,等.长三角工业区夏季近地层臭氧和颗粒物污染相互关系研究[J].大气科学,2017,41(4):618-628. [4] ZHANG T,WU Y Y,GUO Y M,et al.Risk of illness-related school absenteeism for elementary students with exposure to PM2.5 and O3[J].Science of the Total Environment,2022,842. [5] 胡建林,张远航.加强O3和PM2.5协同控制,持续改善我国环境空气质量[J].科学通报,2022,67(18):1975-1977. [6] 刘鑫,史旭荣,雷宇,等.中国PM2.5与O3协同控制路径[J].科学通报,2022,67(18):2089-2099. [7] 裘彦挺,吴志军,尚冬杰,等.我国城市大气PM2.5与O3浓度相关性的时空特征分析[J].科学通报,2022,67(18):2008-2017. [8] 姜华,高健,李红,等.我国大气污染协同防控理论框架初探[J].环境科学研究,2022,35(3):601-610. [9] 魏显珍,赵玉海,赵斌,等.典型印刷工业VOCs排放特征及其污染防治效果分析[J].能源环境保护,2022,36(4):91-98. [10] 宋梦龄,唐文婷,张巍,等.印刷环节挥发性有机物无组织排放特征测定研究[J].环境污染与防治,2022,44(2):225-229. [11] 田娇,覃业霞,杨帅俊,等.定制家具中典型板材VOCs的溯源及排放特征分析[J].中国环境科学,2022,42(7):3058-3067. [12] 薛彩凤,高雪莹,朱惠丽,等.某家具制造各工序VOCs排放特征及风险评估[J].太原科技大学学报,2022,43(2):116-121. [13] 曹冬冬,李兴春,翁艺斌,等.石化污水收集与处理环节挥发性有机物排放特征与反应活性[J].化工环保,2022,42(5):635-642. [14] 程颖,徐勃,王秀艳,等.制药行业典型企业VOCs排放特征及处理技术比较[J].环境工程学报,2022,16(7):2257-2266. [15] 翟增秀,肖咸德,孟洁,等.典型农药制造企业废气污染物排放特征及风险评估[J].环境科学,2023,44(2):730-739. [16] 梁悦,施雨其,麦麦提·斯马义,等.农药制造企业的挥发性有机物排放特征及控制研究[J].环境污染与防治,2021,43(10):1238-1243,1248. [17] 陈纯,李嘉鑫,廉洁,等.河南省典型炭素企业VOCs排放特征及臭氧生成潜势分析[J].环境科学学报,2022,42(11):383-394. [18] 陈雪泉,孔彬,兰青,等.胶黏剂生产行业VOCs组分特征及臭氧生成潜势分析[J].生态环境学报,2022,31(4):750-758. [19] 邹利林,张洲,欧钟湘渝,等.橡胶制品企业挥发性有机物排放组成[J].广州化工,2021,49(23):102-106. [20] 卢立栋,王浩,郑娟,等.关中地区炼焦行业VOCs排放特征及潜势影响研究[J].环境科技,2021,34(4):11-16. [21] 张金萍,李森,贾康阔,等.烹调油烟苯系物和TVOC的排放特征及暴露分析[J].建筑科学,2022,38(6):97-110. [22] 杨振亚,刘伟,惠斌,等.居民住宅油烟排放特征及综合治理技术研究[J].环境科技,2022,35(3):73-78. [23] 何万清,于志强,刘怡,等.餐饮源挥发性有机物的排放特征及影响因素[J].环境工程,2022,40(9):135-142. [24] 王可鑫,张鑫,纪元元,等.煤化工产业园区挥发性有机物污染特征及其对大气复合污染的贡献[J].环境科学研究,2023,36(2):294-304. [25] 谢建辉,秦华,耿晔,等.农药制剂加工企业VOCs排放特征及臭氧生成潜势[J].环境保护科学,2023,49(3):67-73. [26] 费波,卜梦雅,张钢锋.典型石化装置挥发性有机物排放特征及臭氧生成潜势[J].环境工程,2023,41(5):172-178. [27] CARTER W P L,ATKINSON R.Computer modeling study of incremental hydrocarbon reactivity[J].Environmental Science and Technology,1989,23(7):864-880. [28] 李国昊,魏巍,程水源,等.炼焦过程VOCs排放特征及臭氧生成潜势[J].北京工业大学学报,2014,40(1):91-99. [29] 卢立栋,王浩,郑娟,等.关中地区炼焦行业VOCs排放特征及潜势影响研究[J].环境科技,2021,34(4):11-16.
点击查看大图
计量
- 文章访问数: 86
- HTML全文浏览量: 20
- PDF下载量: 7
- 被引次数: 0