EFFECT OF Cr(Ⅵ) STRESS ON ROOT EXUDATES AND MICROBIAL COMPOSITION OF LEERSIA HEXANDRA SWARTZ
-
摘要: 为探讨Cr(Ⅵ)与李氏禾根系分泌物组分的相互作用关系,并找出与Cr(Ⅵ)还原相关的关键微生物,研究了6个Cr(Ⅵ)处理浓度(0,40,60,80,100,120 mg/L)对人工湿地微生物燃料电池耦合系统(CW-MFC)中李氏禾根系分泌的有机物种类及含量的影响,同时测定了对照和最优铬处理浓度下系统中的微生物群落。结果表明:1)铬胁迫对李氏禾根系分泌物的影响呈先增加后降低的趋势,当Cr(Ⅵ)处理浓度为80 mg/L时,根系分泌物的化合物最多。2)根系分泌物以脂类、烷类、酚类、烯类和醇类物质为主,其中烷类物质居多。3)六价铬胁迫显著增加了Geobacter在CW-MFC系统中的丰度,这可能是李氏禾中参与铬还原和富集相关的关键微生物。Abstract: To investigate the response mechanism of root secretions of Leersia hexandra Swartz to Cr(Ⅵ) and identify the key microorganisms in Cr(Ⅵ) reduction, in this study, the types and contents of organic matters secreted by the roots of L. hexandra in an artificial wetland-microbial fuel cell(CW-MFC) system were studied at six Cr(Ⅵ) treatment levels(0, 40, 60, 80, 100, 120 mg/L). Soil microorganisms in the system were measured simultaneously at the control and optimal chromium treatment concentrations. The results showed that: 1) the effect of chromium stress on the root secretion of L. hexandra showed an increasing trend followed by a decreasing trend during the increase of chromium concentration, with the highest quantity of compounds in the root secretion at a hexavalent chromium treatment concentration of 80 mg/L; 2) the roots of L. hexandra were mainly lipids, alkanes, phenols, alkenes, and alcohols, of which alkanes were the most abundant; 3) hexavalent chromium stress significantly increased the enrichment of Geobacter in the CW-MFC system, which may be the key microorganism associated with chromium reduction and enrichment in L. hexandra.
-
Key words:
- Leersia hexandra Swartz /
- Cr(Ⅵ) stress /
- root exudates /
- soil microorganism
-
[1] LI M,ZHOU S.α-Fe2O3/polyaniline nanocomposites as an effective catalyst for improving the electrochemical performance of microbial fuel cell[J].Chemical Engineering Journal,2018,339:539-546. [2] LI M,ZHOU S,XU Y,et al.Simultaneous Cr(Ⅵ) reduction and bioelectricity generation in a dual chamber microbial fuel cell[J].Chemical Engineering Journal,2018,334:1621-1629. [3] 石玉翠,罗昕怡,唐刚,等.人工湿地-微生物燃料电池耦合系统的研究进展及展望[J].环境工程,2021,39(8):25-33. [4] 王丽,李雪,王琳,等.湿地型生物燃料电池(CW-MFC)研究进展[J].环境工程,2018,36(4):72-77. [5] LIU S,LU F,QIU D,et al.Wetland plants selection and electrode optimization for constructed wetland-microbial fuel cell treatment of Cr(Ⅵ)-containing wastewater[J].Journal of Water Process Engineering,2022,49:103040. [6] 余关龙,付永江,彭海渊,等.水平潜流人工湿地对水中Cd2+、Zn2+及营养物的去除[J].环境工程,2019,37(10):116-120. [7] 覃辉,林华,丁娜,等.重金属Ni、Cr复合污染下李氏禾的根际环境特征[J].环境工程,2022,40(5):109-116. [8] 张建聪,王克勤,赵洋毅,等.磷胁迫对高原湿地植物伞莎草根系分泌物的影响[J].环境科学与技术,2019,42(2):17-24. [9] 满向甜.根际环境对蜡状芽孢杆菌与李氏禾交互作用净化水体Cr(Ⅵ)的影响研究[D].桂宁:桂林理工大学,2019. [10] MENG P,PEI H,HU W,et al.How to increase microbial degradation in constructed wetlands:influencing factors and improvement measures[J].Bioresource Technology,2014,157:316-326. [11] LIN H,LIU C,LI B,et al.Trifolium repens L.regulated phytoremediation of heavy metal contaminated soil by promoting soil enzyme activities and beneficial rhizosphere associated microorganisms[J].Journal of Hazardous Materials,2021,402:123829. [12] ZHANG X H,LIU J,HUANG H T,et al.Chromium accumulation by the hyperaccumulator plant Leersia hexandra Swartz[J].Chemosphere,2007,67(6):1138-1143. [13] LIU J,DUAN C Q,ZHANG X H,et al.Characteristics of chromium(Ⅲ) uptake in hyperaccumulator Leersia hexandra Swartz[J].Environmental and Experimental Botany,2011,74:122-126. [14] LI J,LIN Q,ZHANG X,et al.Kinetic parameters and mechanisms of the batch biosorption of Cr(Ⅵ) and Cr(Ⅲ) onto Leersia hexandra Swartz biomass[J].Journal of Colloid and Interface Science,2009,333(1):71-77. [15] SHI Y,TANG G,YOU S,et al.Effect of external aeration on Cr(Ⅵ) reduction in the Leersia hexandra Swartz constructed wetland-microbial fuel cell system[J/OL] 2023,13(5):10.3390/app13053309. [16] 丁娜,林华,张学洪,等.植物根系分泌物与根际微生物交互作用机制研究进展[J].土壤通报,2022,53(5):1212-1219. [17] 杜崇宣,刘云根,王妍,等.外源磷输入对高原湖滨湿地香蒲根系分泌物的影响[J].西部林业科学,2020,49(3):117-125,146. [18] 林华,林志毅,满向甜,等.蜡状芽孢杆菌协同李氏禾根系分泌物去除水体Cr6+的效应及机制[J].生态环境学报,2020,29(2):353-359. [19] 罗晓蔓,周书宇,杨雪.植物根系分泌物的分类和作用[J].安徽农业科学,2019,47(4):37-39,45. [20] 王俊力,刘福兴,付子轼,等.不同收割时间下人工湿地芦苇根系分泌物的组成和特征[J].环境科学研究,2022,35(3):796-805. [21] 叶思诚.油茶适应低磷胁迫的根系生理响应[D].长沙:中南林业科技大学,2013. [22] WANG J,SONG X,WANG Y,et al.Microbial community structure of different electrode materials in constructed wetland incorporating microbial fuel cell[J].Bioresource Technology,2016,221:697-702. [23] 刘沙沙,付建平,蔡信德,等.重金属污染对土壤微生物生态特征的影响研究进展[J].生态环境学报,2018,27(6):1173-1178. [24] LIANG J L,HUANG X M,YAN J W,et al.A review of the formation of Cr(Ⅵ) via Cr(Ⅲ) oxidation in soils and groundwater[J].Science of the Total Environment,2021,774:145762. [25] CHEN Y,JIANG Y,HUANG H,et al.Long-term and high-concentration heavy-metal contamination strongly influences the microbiome and functional genes in Yellow River sediments[J].Science of the Total Environment,2018,637/638:1400-1412. [26] JANSSEN P H.Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes[J].(0099-2240 (Print)). [27] KIM J R,JUNG S H,REGAN J M,et al.Electricity generation and microbial community analysis of alcohol powered microbial fuel cells[J].Bioresource Technology,2007,98(13):2568-2577. [28] GEORGIEVA T,EVSTATIEVA Y,SAVOV V,et al.Assessment of plant growth promoting activities of five rhizospheric Pseudomonas strains[J].Biocatalysis and Agricultural Biotechnology,2018,16:285-292. [29] JIANG D,LI B,JIA W,et al.Effect of inoculum types on bacterial adhesion and power production in microbial fuel cells[J].Applied Biochemistry and Biotechnology,2009,160(1):182.
点击查看大图
计量
- 文章访问数: 67
- HTML全文浏览量: 8
- PDF下载量: 3
- 被引次数: 0