REMOVAL EFFICIENCY OF OPPORTUNISTIC PATHOGENS AND ORGANIC MATTERS IN SECONDARY EFFLUENT BY SLOW FILTRATION WITH BIOFILM
-
摘要: 城市污水处理厂的二级出水中含有大量条件致病菌,对人体健康构成了潜在威胁。以污水厂二级出水为处理对象,探究慢滤工艺在不同运行条件下(进水碳氮比、钙离子浓度、酸碱性)对水中条件致病菌(铜绿假单胞菌、军团菌和鸟分支杆菌)和溶解性有机碳(dissolved organic carbon,DOC)的去除效能,并对条件致病菌的含量与DOC和大肠杆菌的浓度分别进行相关性分析。结果表明:在滤速5 cm/h条件下,改变进水水质条件,生物膜慢滤对条件致病菌和DOC的去除效果均优于无生物膜慢滤,当C/N为10,ρ(Ca2+)为60 mg/L,pH值为7时,生物膜慢滤对条件致病菌的去除效果最佳;在最佳运行条件下,生物膜慢滤出水中条件致病菌含量与DOC浓度呈正相关;除ρ(Ca2+)外,在其他最佳运行条件(C/N为10,pH值为7)下,生物膜慢滤出水中条件致病菌的含量与大肠杆菌浓度均呈正相关。综上,生物膜慢滤工艺可以有效去除二级出水中的条件致病菌和有机物,可作为二级出水深度处理的有效方式,并为再生水回用过程中的水风险提供安全保障。Abstract: The secondary effluent of municipal sewage treatment plants contains a large number of opportunistic pathogens, which poses a potential threat to human health. In this study, the efficacy of the slow filtration process on the removal of opportunistic pathogens (Pseudomonas aeruginosa, Legionella, and Mycobacterium avium) and DOC in water under different operating conditions (influent C/N ratio, Ca2+ concentration, pH value) was investigated, and the correlation analysis between the removal of opportunistic pathogens and DOC and E. coli was conducted, respectively. The results showed that under the condition of a filtration rate of 5 cm/h and changing the influent water quality conditions, the effect of biofilm slow filtration on the removal of opportunistic pathogens was greater than that without biofilm slow filtration. When the C/N ratio was 10, Ca2+ concentration was 60 mg/L and pH value was 7, the best effect of biofilm slow filtration on the removal of opportunistic pathogens was achieved. Under the optimal operating conditions, the content of opportunistic pathogens in the effluent of biofilm slow filtration was positively correlated with the DOC content; except for the Ca2+ concentration, the content of opportunistic pathogens by biofilm slow filtration was positively correlated with E. coli in other operating conditions. In conclusion, the biofilm slow filtration process can effectively remove opportunistic pathogens and organic matter in secondary effluent, which is an effective way to treat the secondary effluent in depth and provide a safety guarantee for the water risk in the reuse process of reclaimed water.
-
Key words:
- secondary effluent /
- slow filtration /
- opportunistic pathogens /
- DOC /
- correlation analysis
-
[1] 李允琛. 浅析我国水资源现状与问题[J]. 农村科学实验, 2020(1):70-71. [2] 李昆, 魏源送, 王健行, 等. 再生水回用的标准比较与技术经济分析[J]. 环境科学学报, 2014, 34(7):1635-1653. [3] 宋红梅, 金玉怀, 李丽婕, 等. 石家庄市水体环境病原菌分布的研究[J]. 环境与健康杂志, 2015, 32(2):140-142. [4] 杨文澜,潘丙才,张淑娟, 等. 污水二级出水有机物(EfOM)的组成、性质及处理技术[J].水处理技术,2013,39(5):1-6. [5] 易鑫, 李娟, 黄京, 等. 北京市4种不同污水处理系统中病原菌变化研究[J]. 环境科学学报, 2015, 35(6):1759-1767. [6] 康芳芳. 不同组合工艺深度处理污水厂二级出水的试验研究[D]. 哈尔滨:哈尔滨工业大学, 2016. [7] 董军. 慢滤池去除原水中微量有机物及氨氮的应用研究[D]. 昆明:昆明理工大学, 2008. [8] PANAGIOTIS K, DIRK S, SEITZ H M. Distribution and removal of Giardia and Cryptosporidium in water supplies in Germany[J]. Water Science & Technology, 1998, 37(2):9-18. [9] RANDTKE S J, HORSLEY M B. Water Treatment Plant Design[M]. New York:McGraw-Hill, 2012. [10] BOMO A M, STEVIK T K, HOVI I, et al. Bacterial removal and protozoan grazing in biological sand filter[J]. Journal of Environmental Quality, 2004, 33(3):1041-1047. [11] 刘烨辉. 慢滤-消毒对二级出水中条件致病菌的去除效能及机制[D]. 北京:北京建筑大学, 2021. [12] 李继民. 不同滤料的生物慢滤柱处理微污染窖水研究[D].兰州:兰州交通大学,2019. [13] 陈青.混凝沉淀-曝气生物滤池处理城市污水的生产性试验研究[D]. 哈尔滨:哈尔滨工业大学, 2009. [14] 国家环境保护局. 水质 钙的测定 EDTA滴定法:GB/T 7476-1987[S]. 北京, 1987. [15] 王亚军, 曹相生, 孟雪征.不同C/N DEHP对反硝化生物滤池的影响及其去除[J]. 水利天地, 2015(2):7-10. [16] 付如意. 铜绿假单胞菌群体感应抑制剂筛选及其作用机制研究[D]. 成都:成都大学, 2021. [17] 吕孙良, 陈涛涛, 欧阳松应. 糖基化修饰在嗜肺军团菌致病过程中的作用[J]. 中国细胞生物学学报, 2021, 43(12):2284-2293. [18] 彭瑜, 杨朝晖, 曾光明, 等. Ca2+在净水生物膜团聚体培养中的影响研究[J]. 环境工程学报, 2009, 3(9):1615-1619. [19] 张颖. Ca2+、Mg2+强化Pesudomonoas stutzeri XL-2生物膜形成的机理研究[D]. 重庆:重庆大学, 2019. [20] 李明远. 微生物学与免疫学[M]. 北京:高等教育出版社, 2010:290. [21] 林秋霞. 嗜肺军团菌核酸检测试剂盒在不同环境军团菌污染水样中的应用研究[D]. 广州:华南理工大学, 2017. [22] HASAN H A, MUHAMMAD M H, ISMAIL N. A review of biological drinking water treatment technologies for contaminants removal from polluted water resources[J]. Journal of Water Process Engineering, 2020, 33:101035. [23] 董庆利, 姚远, 赵勇, 等. 铜绿假单胞菌的温度、pH值和乳酸钠主参数模型构建[J].农业机械学报, 2014, 45(1):197-202. [24] HUISMAN L AND WOOD W E. Slow Sand Filtration[M]. Geneva:World Health Organization, 1974. [25] 彭瑜. Ca2+在SBBR生物膜团聚体培养中的影响研究[D]. 长沙:湖南大学, 2010. [26] 邹小兵, 孟刚, 郑泽根, 等. 治理明胶生产废水污染研究进展[J]. 明胶科学与技术,2005, 24(2):74-82. [27] WANG H, PRYOR M A, EDWARDS M A, et al. Effect of GAC pre-treatment and disinfectant on microbial community structure and opportunistic pathogen occurrence[J]. Water Research, 2013, 47(15):5760-5772. [28] VALDÉZ J C, PERAL M C, RACHID M, et al. Interference of Lactobacillus plantarum with Pseudomonas aeruginosa in vitro and in infected burns:the potential use of probiotics in wound treatment[J]. Clinical Microbiology & Infection, 2010, 11(6):472-479. [29] WANG C, LIU S T, XU X C, et al. Achieving mainstream nitrogen removal through simultaneous partial nitrification,anammox and denitrification process in an integrated fixed film activated sludge reactor[J]. Chemosphere, 2018, 3:457-466. [30] 国家市场监督管理总局. 城市污水再生利用——城市杂用水水质:GB/T 18920-2020[S]. 北京, 2020. [31] 李蕴喜. b型流感嗜血杆菌多糖-奈瑟氏菌属B群脑膜炎球菌外膜蛋白复合物菌苗对婴幼儿的免疫原性[J]. 国际生物制品学杂志, 1991(1):32. [32] CULOTTI A, PACKMAN A I. Pseudomonas aeruginosa promotes escherichia coli biofilm formation in nutrient-limited medium[J]. PLoS ONE, 2014, 9(9):e107186.
点击查看大图
计量
- 文章访问数: 84
- HTML全文浏览量: 9
- PDF下载量: 9
- 被引次数: 0