中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

冰体融化过程中三线态溶解性有机物的释放规律

李旭 薛爽 于英潭 姜彩虹 刘强

何毓忠, 赵海宝, 郦建国, 姚宇平. 低低温电除尘器灰硫比计算及中国煤种分析[J]. 环境工程, 2015, 33(2): 76-79. doi: 10.13205/j.hjgc.201502016
引用本文: 李旭, 薛爽, 于英潭, 姜彩虹, 刘强. 冰体融化过程中三线态溶解性有机物的释放规律[J]. 环境工程, 2024, 42(3): 41-50. doi: 10.13205/j.hjgc.202403005
He Yuzhong Zhao Haibao Li Jianguo Yao Yuping, . CALCULATION OF DUST/SO3 RATIO FOR LOW-LOW TEMPERATURE ELECTROSTATICPRECIPITATOR AND ANALYSIS OF COALS IN CHINA[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(2): 76-79. doi: 10.13205/j.hjgc.201502016
Citation: LI Xu, XUE Shuang, YU Yingtan, JIANG Caihong, LIU Qiang. RELEASE LAW OF TRIPLET STATES OF DISSOLVED ORGANIC MATTER DURING ICE MELTING PROCESS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(3): 41-50. doi: 10.13205/j.hjgc.202403005

冰体融化过程中三线态溶解性有机物的释放规律

doi: 10.13205/j.hjgc.202403005
基金项目: 

国家自然科学基金项目(41771503)

详细信息
    作者简介:

    李旭(1997-),女,硕士研究生,主要研究方向为低温条件下污染物的环境行为。2514299948@qq.com

    通讯作者:

    薛爽(1977-),女,博士,教授,主要研究方向为低温条件下污染物的环境行为。xueshuang666@sina.com

RELEASE LAW OF TRIPLET STATES OF DISSOLVED ORGANIC MATTER DURING ICE MELTING PROCESS

  • 摘要: 以辽宁省沈阳市的浑河河水(HR)和丁香湖湖水(DXL)作为研究对象,通过淋溶实验和室内模拟光解实验,选用2,4,6-三甲基苯酚(TMP)作为三线态溶解性有机物(3DOM*)的探针,考察了不同温度条件下冰体融化时溶解性有机物(DOM)的光谱学特性变化,以及DOM、荧光物质和3DOM*的释放规律。结果表明:融化温度越低,HR与DXL 2种水样的SUVA254E2/E3均显著增加,且DXL水样表现出的增加更为明显。HR和DXL水样中均包含类富里酸类物质、类腐植酸类物质,HR样品中还含有类芳香族蛋白类物质。冻结温度相同,融化温度越低,荧光物质从样品中析出得越规律,呈逐渐减少的趋势。融化温度越低,3DOM*的释放越规律,且HR表现得尤为明显,HR融化初期3DOM*的稳态浓度是原始水样的4.1倍。
  • [1] BRIMBLECOMBE P, CLEGG S L, DAVIES T D, et al.Observations of the preferential loss of major ions from melting snow and laboratory ice[J]. Water Research,1987,21(10):1279-1286.
    [2] BRIMBLECOMBE P, CLEGG S L, DAVIES T D, et al. The loss of halide and sulphate ions from melting ice[J]. Water Research,1988,22(6):693-700.
    [3] 李宁. 溶解性有机质对羟基自由基氧化降解有机污染物的影响[D].大连:大连理工大学,2015.
    [4] WANG J Q, WANG K, GUO Y C, et al. Photochemical degradation of nebivolol in different natural organic matter solutions under simulated sunlight irradiation:kinetics, mechanism and degradation pathway[J]. Water Research,2020,173(C):115524.
    [5] CHEN Q C, MU Z, XU L, et al. Triplet-state organic matter in atmospheric aerosols:formation characteristics and potential effects on aerosol aging[J]. Atmospheric Environment,2021,252:118343.
    [6] 白凯,君珊,郑朔方,等.呼伦湖水体溶解性有机物荧光特征及来源分析[J/OL].环境工程技术学报:1-14[2023-01-18

    ].http://zz.xue1888.com/kcms/detail/11.5972.X.20220711.1651.006.html.
    [7] 何杰,朱学惠,魏彬,等.基于EEMs与UV-vis分析苏州汛期景观河道中DOM光谱特性与来源[J].环境科学,2021,42(4):1889-1900.
    [8] 周石磊,孙悦,张艺冉,等.周村水库四季变化过程中水体溶解性有机物的分布与光谱特征[J].环境科学学报,2019,39(10):3492-3502.
    [9] ZHOU X, MOPPER K. Determination of photochemically produced hydroxyl radicals in seawater and freshwater[J]. Marine Chemistry,1990,30.
    [10] COOPER W J, ZIKA R G, PETASNE R G, et al. Photochemical formation of hydrogen peroxide in natural waters exposed to sunlight[J]. Environmental Science & Technology,1988,22(4598):711-712.
    [11] HOU Z C, FANG Q, LIU H Y, et al. Photolytic kinetics of pharmaceutically active compounds from upper to lower estuarine waters:roles of triplet-excited dissolved organic matter and halogen radicals[J]. Environmental Pollution,2021,276:116692.
    [12] BRACCHINI L, LOISELLE S, DATTILO A M, et al. The spatial distribution of optical properties in the ultraviolet and visible in an aquatic ecosystem[J]. Photochemistry and photobiology,2004,80(1):139-149.
    [13] ELISA DE L, MARCO M, VALTER M, et al. Photochemical production of organic matter triplet states in water samples from mountain lakes, located below or above the tree line[J]. Chemosphere,2012,88(10):1208-1213.
    [14] 陈彦彤,李旭东,陶冶,等.有机激发三重态参与的光化学反应研究进展[J].化工进展,2020,39(8):3344-3353.
    [15] 闫晓寒,韩璐,文威,等.辽河保护区水体溶解性有机质空间分布与来源解析[J].环境科学学报, 2021, 41(4):1419-1427.
    [16] 王杰琼. 近岸海水中溶解性有机质对有机微污染物光降解行为的影响[D].大连:大连理工大学,2019.
    [17] 郭忠禹. 海水溶解性有机质对磺胺氯哒嗪光降解的影响[D]. 大连:大连理工大学,2020.
    [18] 苏欣颖,王宇,程欣,等.哈尔滨市降雪中溶解性有机物光谱特性分析[J].环境化学,2021,40(1):312-320.
    [19] 陈静. 水体冻结-融化过程中溶解性有机物的变化[D].沈阳:辽宁大学,2015.
    [20] XUE S, CHEN J, TIE M. Release of dissolved organic matter from melting ice[J]. Environmental Progress & Sustainable Energy,2016,35(5):1458-1467.
    [21] WENK J, GRAF C, AESCHBACHER M, et al. Effect of solution pH on the dual role of dissolved organic matter in sensitized pollutant photooxidation[J]. Environmental Science & Technology, 2021,55(22):15110-15122.
    [22] PEURAWORI J, PIHLAJA K. Molecular size distribution and spectroscopic properties of aquatic humic substances[J]. Analytica Chimica Acta,1997,337(2):133-149.
    [23] YANG C H, LIU Y Z, ZHU Y X,et al. Insights into the binding interactions of autochthonous dissolved organic matter released from Microcystis aeruginosa with pyrene using spectroscopy[J]. Marine Pollution Bulletin,2016,104(1/2):113-120.
    [24] 刘纪阳,薛爽,张营,等.水相和冰相中不同pH条件下溶解性有机质对苊光降解的影响[J].环境科学学报,2021,41(5):1930-1939.
    [25] CHEN M L, MAIE N, PARISH K, et al. Spatial and temporal variability of dissolved organic matter quantity and composition in an oligotrophic subtropical coastal wetland[J]. Biogeochemistry, 2013, 115(1):167-183.
    [26] DIANE M M, ELIZABETH W B, PAUL K W, et al. Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity[J]. Limnology and Oceanography,2001,46(1). DOI: 10.4319/L0.2001.46.1.0038.
    [27] JUSTIN E B, ANNETTE S E. Characterization of dissolved organic matter in cave and spring waters using UV-Vis absorbance and fluorescence spectroscopy[J]. Organic Geochemistry,2009,41(3):270-280.
    [28] 孟永霞,程艳,李琳,等.新疆匹里青河小流域DOM荧光特征及与汞的相互作用[J].生态与农村环境学报,2020,36(6):770-777.
    [29] JAFFÉ R, BOYER J N, LU X,et al. Source characterization of dissolved organic matter in a subtropical mangrove-dominated estuary by fluorescence analysis[J]. Marine Chemistry,2003,84(3/4):195-210.
    [30] ZHANG Y, ZHANG E, YIN Y, et al. Characteristics and sources of chromophoric dissolved organic matter in lakes of the Yungui Plateau, China, differing in trophic state and altitude[J]. Limnology and Oceanography,2010,55(6):2645-2659.
    [31] CHEN W,WESTERHOFF P,LEENHEER J A,et al. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter[J]. Environmental Science & Technology,2003,37(24):5701-5710.
    [32] WU F C, TANOUE E, LIU C Q. Fluorescence and amino acid characteristics of molecular size fractions of DOM in the waters of Lake Biwa[J]. Biogeochemistry,2003,65(2):245-257.
    [33] NIETO-CID M, ÁLVAREZ-SALGADO X A, PÉREZ F F. Microbial and photochemical reactivity of fluorescent dissolved organic matter in a coastal upwelling system[J]. Limnology and Oceanography,2006,51(3):1391-1400.
    [34] KRAMER G D, HERNDL G J. Photo- and bioreactivity of chromophoric dissolved organic matter produced by marine bacterioplankton[J]. Aquatic Microbial Ecology,2004,36(3):239-246.
    [35] WANG H, WANG Y H, ZHUANG W, et al. Effects of fish culture on particulate organic matter in a reservoir-type river as revealed by absorption spectroscopy and fluorescence EEM-PARAFAC[J]. Chemosphere,2020,239(C):124734.
    [36] MEGHAN O'CONNOR, SAMANTHA R H, DOUGLAS E L, et al. Quantifying photo-production of triplet excited states and singlet oxygen from effluent organic matter[J]. Water Research,2019,156:23-33.
    [37] 郭晗,关雪峰,薛爽,等.光照条件下冰相中激发三线态溶解性有机物的生成及其对三甲基苯酚的光敏化降解作用[J].环境科学学报,2022,42(8):186-193.
    [38] GLOVER C M, ROSARIO-ORTIZ F L. Impact of halides on the photoproduction of reactive intermediates from organic matter[J]. Environmental Science & Technology,2013,47(24):13949-13956.
    [39] MCCABE A J, ARNOLD W A. Reactivity of triplet excited states of dissolved natural organic matter in stormflow from mixed-use watersheds[J]. Environmental Science Technology,2017,51(17):9718-9728.
  • 期刊类型引用(27)

    1. 李海荣,王先虎. 燃煤耦合污泥发电机组电除尘器腐蚀诊断. 发电设备. 2024(02): 119-124 . 百度学术
    2. 陈祥云,斯高峰,周蔡宇. 电除尘器锯齿线电场在线恢复技术研究. 电力与能源. 2024(03): 368-369+388 . 百度学术
    3. 赵海宝,钱水军,何毓忠,徐越前,王飞燕. 越南燃煤烟气静电除尘特性分析及工程应用. 电力与能源. 2023(04): 395-400 . 百度学术
    4. 李东阳,刘玺璞,张超. 低低温电除尘器除尘效率公式的修正. 中国电机工程学报. 2022(07): 2623-2630 . 百度学术
    5. 郭海鹰,赵金达,朱锦杰,范妙春,杨军. 燃煤机组电除尘超低排放改造技术研究. 电力与能源. 2021(02): 240-244 . 百度学术
    6. 李锦萍,熊英莹,宋婷婷,赵超群,胡飞. 酸化蒸发法对亚微米细颗粒物团聚和脱除性能的影响. 洁净煤技术. 2021(05): 224-232 . 百度学术
    7. 张知翔,徐党旗,车宏伟,贾兆鹏,李文锋,邹小刚,李楠. 高硫煤机组尾部烟道中灰硫分布规律研究. 热力发电. 2020(09): 104-108 . 百度学术
    8. 张知翔,许良,徐党旗,邹小刚,李文锋,李楠,车宏伟. 高硫煤机组低低温省煤器积灰特性研究. 热力发电. 2020(12): 135-139 . 百度学术
    9. 潘志越. 新一代媒介式烟气—烟气换热器在小型机组系统布置方案研究. 电力与能源. 2020(06): 747-752 . 百度学术
    10. 郭海鹰,朱锦杰,赵金达,金扬,毛佳倩. 超低排放下电除尘提效技术的研究及改造. 电力与能源. 2020(06): 758-760+766 . 百度学术
    11. 胡成,陈炬钢,徐召金. 浅谈低低温电除尘器的优化设计. 山东化工. 2020(23): 147-149 . 百度学术
    12. 徐克涛,马俊飞,张杨. 水媒式烟气换热装置的运行现状分析与优化措施探讨. 中国电力. 2019(01): 118-123 . 百度学术
    13. 赵海宝,何毓忠,周冰. 低低温电除尘超低排放工程分析. 中国环保产业. 2019(11): 33-36 . 百度学术
    14. 金玉健. 影响燃用石油焦玻璃熔窑烟气治理设施稳定运行的因素分析. 节能与环保. 2018(08): 63-65 . 百度学术
    15. 赵海宝,郭滢,詹立勇. 低低温电除尘器蒸汽换热系统设计与应用. 电力科技与环保. 2018(03): 39-41 . 百度学术
    16. 胡露钧,赵海宝,沈家栋,马湖刚,何毓忠. 低低温电除尘与常规电除尘工程应用对比分析. 环境工程. 2018(01): 67-70+61 . 本站查看
    17. 赵海宝,何毓忠,章永玮,詹立勇,郭滢. 复杂多变工况下低低温电除尘适应性研究. 环境工程. 2018(06): 82-85 . 本站查看
    18. 杨琳,李军状,张运宇,赵洋. 基于新标准的燃煤机组电除尘器提效改造性能试验研究. 环境污染与防治. 2018(08): 922-926+949 . 百度学术
    19. 沈家栋,赵海宝. 低低温电除尘器绝缘装置设计与分析. 中国电力. 2018(03): 150-154 . 百度学术
    20. 吴金,赵海宝,郦建国,郭滢,何毓忠. 低低温电除尘器在1000MW机组燃煤电厂的应用. 中国环保产业. 2018(01): 31-34 . 百度学术
    21. 于伟静. 燃煤电厂烟尘超低排放技术研究现状及发展. 化工进展. 2017(S1): 428-435 . 百度学术
    22. 郭凯岳,苏伟,宋存义,童震松,吴雪娜. 燃煤电厂粉尘超净排放控制技术研究现状与进展. 现代化工. 2017(01): 14-17+19 . 百度学术
    23. 邵媛,薛方明. 低低温电除尘器应用于燃煤电厂关键技术研究. 环保科技. 2016(05): 51-54 . 百度学术
    24. 沈家栋,赵海宝. 常规电除尘器低低温改造分析与研究. 环境工程. 2016(11): 68-71+75 . 本站查看
    25. 邵媛,徐劲松. 燃煤烟气SO_3检测及控制技术探讨. 东北电力技术. 2016(04): 49-52 . 百度学术
    26. 杨倩. 电除尘低低温改造设计及工程应用. 电力与能源. 2016(05): 624-627 . 百度学术
    27. 沈艳梅,董琨,崔智勇,魏书洲. 低低温电除尘器设计烟温的理论计算及存在问题. 中国电力. 2016(07): 151-156 . 百度学术

    其他类型引用(20)

  • 加载中
计量
  • 文章访问数:  97
  • HTML全文浏览量:  17
  • PDF下载量:  3
  • 被引次数: 47
出版历程
  • 收稿日期:  2023-02-08
  • 网络出版日期:  2024-05-31

目录

    /

    返回文章
    返回