CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊
JST China 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

长期二硫化碳胁迫下硝化污泥微生物菌群变化

周奇 韩培培 侯雅男 黄聪

周奇, 韩培培, 侯雅男, 黄聪. 长期二硫化碳胁迫下硝化污泥微生物菌群变化[J]. 环境工程, 2024, 42(3): 51-57. doi: 10.13205/j.hjgc.202403006
引用本文: 周奇, 韩培培, 侯雅男, 黄聪. 长期二硫化碳胁迫下硝化污泥微生物菌群变化[J]. 环境工程, 2024, 42(3): 51-57. doi: 10.13205/j.hjgc.202403006
ZHOU Qi, HAN Peipei, HOU Yanan, HUANG Cong. CHANGES IN MICROBIAL COMMUNITY OF NITRIFYING SLUDGE UNDER LONG-TERM CARBON DISULFIDE STRESS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(3): 51-57. doi: 10.13205/j.hjgc.202403006
Citation: ZHOU Qi, HAN Peipei, HOU Yanan, HUANG Cong. CHANGES IN MICROBIAL COMMUNITY OF NITRIFYING SLUDGE UNDER LONG-TERM CARBON DISULFIDE STRESS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(3): 51-57. doi: 10.13205/j.hjgc.202403006

长期二硫化碳胁迫下硝化污泥微生物菌群变化

doi: 10.13205/j.hjgc.202403006
基金项目: 

天津市合成生物技术创新能力提升行动——环境与能源安全合成微生物组(TSBICIP-CXRC-007)

详细信息
    作者简介:

    周奇(1997-),女,硕士研究生,主要研究方向为污水资源化利用。zhouqi1567@163.com

    通讯作者:

    黄聪(1984-),男,副研究员,主要研究方向为工业废水处理技术。huangc@tib.cas.cn

CHANGES IN MICROBIAL COMMUNITY OF NITRIFYING SLUDGE UNDER LONG-TERM CARBON DISULFIDE STRESS

  • 摘要: 我国每年约有近百万吨二硫化碳(CS2)用于粘胶纤维的生产。工业上常用曝气手段去除CS2,然而一些CS2会继续留存在水中并进入污水处理的硝化单元,影响运行效果。研究发现,短期胁迫下10 mg/L CS2即显著抑制硝化污泥活性,低浓度CS2(10~40 mg/L)会促进硝化污泥代谢活性和抗氧化活性,高浓度(100~200 mg/L)则会产生抑制。在长期CS2(20~200 mg/L)胁迫下硝化反应被完全抑制,长期运行过程中发现硝化污泥表面有白色浑浊物,经液相色谱与XPS分析发现该白色浑浊物为单质硫,推测可能发生了CS2→COS→H2S→S0→SO2-3→SO2-4的同化过程。在16S rRNA分析中也发现了参与硫氧化的Actinobacteria、Sinomonas丰度升高,也验证了这一推测。
  • [1] 杨海洋. 二硫化碳生命周期评价[D]. 郑州:河南农业大学, 2022.
    [2] 张昊杰. 粘胶纤维生产中废水处理技术分析[J]. 化工管理, 2016(9):78.
    [3] HYMAN M R, KIM C, ARP D. Inhibition of ammonia monooxygenase in Nitrosomonas europaea by carbon disulfide[J]. Journal of Bacteriology, 1990, 172(9):4775-4782.
    [4] BREMNER J M, BUNDY L G. Inhibition of nitrification in soils by volatiles sulfur-compounds[J]. Soil Biol Biochem, 1974, 6(3):161-165.
    [5] ROTTHAUWE J H, WITZEL K P, LIESACK W. The ammonia monooxygenase structural gene amoA as a functional marker:molecular fine-scale analysis of natural ammonia-oxidizing populations[J]. Applied and Environmental Microbiology, 1997, 63(12):4704-4712.
    [6] POLY F, WERTZ S, BROTHIER E, et al. First exploration of Nitrobacter diversity in soils by a PCR cloning-sequencing approach targeting functional gene nxrA[J]. FEMS Microbiology Ecology, 2008, 63(1):132-140.
    [7] MA Y X, HUANG J, HAN T W, et al. Comprehensive metagenomic and enzyme activity analysis reveals the negatively influential and potentially toxic mechanism of polystyrene nanoparticles on nitrogen transformation in constructed wetlands[J]. Water Research, 2021, 202:117420.
    [8] GUI M Y, CHEN Q, NI J R. Effect of NaCl on aerobic denitrification by strain Achromobacter sp. GAD-3[J]. Applied Microbiology and Biotechnology, 2017, 101(12):5139-5147.
    [9] XIE P, HO S H, XIAO Q Y, et al. Revealing the role of nitrate on sulfide removal coupled with bioenergy production in Chlamydomonas sp. Tai-03:metabolic pathways and mechanisms[J]. Journal of Hazardous Materials, 2020, 399:123115.
    [10] KIM H S, JEONG S S, LEE J G, et al. Biologically produced sulfur as a novel adsorbent to remove Cd2+ from aqueous solutions[J]. Journal of Hazardous Materials, 2021, 419:126470.
    [11] LIU Y, HAN Y, ZHANG J, et al. Deciphering effects of humic acid in landfill leachate on the simultaneous nitrification, anammox and denitrification (SNAD) system from performance, electron transfer and microbial community[J]. Science of the Total Environment, 2022, 809:151178.
    [12] HE Y, GUO J B, SONG Y Y, et al. Te(Ⅳ) bioreduction in the sulfur autotrophic reactor:performance, kinetics and synergistic mechanism[J]. Water Research, 2022, 220:118632.
    [13] WEI W, HAO Q, CHEN Z, et al. Polystyrene nanoplastics reshape the anaerobic granular sludge for recovering methane from wastewater[J]. Water Research, 2020, 182:116041.
    [14] WANG K, SHENG Y, CAO H, et al. Impact of applied current on sulfate-rich wastewater treatment and microbial biodiversity in the cathode chamber of microbial electrolysis cell (MEC) reactor[J]. Chemical Engineering Journal, 2017, 307:150-158.
    [15] WENG X, MAO Z, FU H M, et al. Biofilm formation during wastewater treatment:motility and physiological response of aerobic denitrifying bacteria under ammonia stress based on surface plasmon resonance imaging[J]. Bioresource Technology, 2022, 361:127712.
    [16] LEMIRE J, ALHASAWI A, APPANNA V P, et al. Metabolic defence against oxidative stress:the road less travelled so far[J]. Journal of Applied Microbiology, 2017, 123(4):798-809.
    [17] ANDREYEV A Y, KUSHNAREVA Y E, STARKOV A A. Mitochondrial metabolism of reactive oxygen species[J]. Biochemistry, 2005, 70(2):200-214.
    [18] PATEL A, PANDEY V, PATRA D D. Influence of tannery sludge on oil yield, metal uptake and antioxidant activities of Ocimum basilicum L. grown in two different soils[J]. Ecological Engineering, 2015, 83:422-430.
    [19] LUCKER S, WAGNER M, MAIXNER F, et al. A Nitrospira metagenome illuminates the physiology and evolution of globally important nitrite-oxidizing bacteria[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(30):13479-13484.
    [20] MALKIN R, RABINOWITZ J C. The reconstitution of clostridial ferredoxin[J]. Biochemical and Biophysical Research Communications, 1966, 23(6):822-827.
    [21] VELA J D, DICK G J, LOVE N G. Sulfide inhibition of nitrite oxidation in activated sludge depends on microbial community composition[J]. Water Research, 2018, 138:241-249.
    [22] HUANG Z, WEI Z, XIAO X, et al. Nitrification/denitrification shaped the mercury-oxidizing microbial community for simultaneous Hg0 and NO removal[J]. Bioresource Technology, 2019, 274:18-24.
    [23] ZHU F X, YAN Y Y, DOYLE E, et al. Microplastics altered soil microbiome and nitrogen cycling:the role of phthalate plasticizer[J]. Journal of Hazardous Materials, 2022, 427:127944.
    [24] WESTERHOLM M, CRAUWELS S, van GEEL M, et al. Microwave and ultrasound pre-treatments influence microbial community structure and digester performance in anaerobic digestion of waste activated sludge[J]. Applied Microbiology Biotechnology, 2016, 100(12):5339-5352.
    [25] CHANG R, BIRD L, BARR C, et al. Thioclava electrotropha sp. nov., a versatile electrode and sulfur-oxidizing bacterium from marine sediments[J]. International Journal of Systematic Evolutionary Microbiology, 2018, 68(5):1652-1658.
    [26] LIU Y, LAI Q L, SHAO Z Z. A Multilocus sequence analysis scheme for phylogeny of Thioclava Bacteria and proposal of two novel species[J]. Frontiers in Microbiology, 2017, 8:1321.
  • 加载中
计量
  • 文章访问数:  59
  • HTML全文浏览量:  7
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-30
  • 网络出版日期:  2024-05-31

目录

    /

    返回文章
    返回