中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

MFC-A2/O耦合系统的研究进展

朱勇强 许婷婷 沈倩

朱勇强, 许婷婷, 沈倩. MFC-A2/O耦合系统的研究进展[J]. 环境工程, 2024, 42(3): 99-107. doi: 10.13205/j.hjgc.202403012
引用本文: 朱勇强, 许婷婷, 沈倩. MFC-A2/O耦合系统的研究进展[J]. 环境工程, 2024, 42(3): 99-107. doi: 10.13205/j.hjgc.202403012
ZHU Yongqiang, XU Tingting, SHEN Qian. RESEARCH PROGRESS ON COUPLING SYSTEMS OF CONSTRUCTED MICROBIAL FUEL CELL (MFC)-A2/O[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(3): 99-107. doi: 10.13205/j.hjgc.202403012
Citation: ZHU Yongqiang, XU Tingting, SHEN Qian. RESEARCH PROGRESS ON COUPLING SYSTEMS OF CONSTRUCTED MICROBIAL FUEL CELL (MFC)-A2/O[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(3): 99-107. doi: 10.13205/j.hjgc.202403012

MFC-A2/O耦合系统的研究进展

doi: 10.13205/j.hjgc.202403012
基金项目: 

上海市自然科学基金面上项目(18ZR1438000)

详细信息
    作者简介:

    朱勇强(1965-),男,博士,正高级工程师,主要研究方向为工业废水复合生化处理技术与新能源的研究。Zhuyq@sit.edu.cn

    通讯作者:

    朱勇强(1965-),男,博士,正高级工程师,主要研究方向为工业废水复合生化处理技术与新能源的研究。Zhuyq@sit.edu.cn

RESEARCH PROGRESS ON COUPLING SYSTEMS OF CONSTRUCTED MICROBIAL FUEL CELL (MFC)-A2/O

  • 摘要: MFC-A2/O是一种新型生物电化学系统,可以在降解废水中有机物的同时将化学能转化为电能,进一步推动"减污降碳,协同增效"目标的落实,对未来污水处理系统的升级改造具有重要的参考价值。结合诸多学者关于MFC-A2/O系统脱氮产电性能的研究,介绍了MFC-A2/O的工作原理,并对其系统结构(电极材料、电池构型、投加微生物)和运行参数(C/N、HRT、外电阻、pH、其他条件因素)进行了综述,同时总结了该系统当前存在的问题与不足,探讨了该系统在脱氮产电性能方面的优势与发展前景,为MFC-A2/O系统的优化提供参考。
  • [1] LI X H, ZHU W G, MENG G J, et al. Efficiency and kinetics of conventional pollutants and tetracyclines removal in integrated vertical-flow constructed wetlands enhanced by aeration[J]. Journal of Environmental Management, 2020, 273:111-120.
    [2] SAMAL K, DASH R R, BHUNIA P. Design and development of a hybrid macrophyte assisted vermifilter for the treatment of dairy wastewater:a statistical and kinetic modelling approach[J]. Science of the Total Environment, 2018, 645:156-169.
    [3] TEMEL F A, OZYAZICI G, USLU V R, et al. Full scale subsurface flow constructed wetlands for domestic wastewater treatment:3 years' experience[J]. Environmental Progress & Sustainable Energy, 2018, 37(4):1348-1360.
    [4] TURKER O C, TURE C, BOCUK H, et al. Evaluation of an innovative approach based on prototype engineered wetland to control and manage boron (B) mine effluent pollution[J]. Environmental Science and Pollution Research International, 2016, 23(19):19302-19316.
    [5] QI J J, ZHU F F, WEI X, et al. Comparison of biodiesel production from sewage sludge obtained from the A2/O and MBR processes by in situ transesterification[J]. Waste Manag, 2016, 49:212-220.
    [6] GAO Z Q, CAI L M, LIU M, et al. Total mercury and methylmercury migration and transformation in an A2/O wastewater treatment plant[J]. The Science of the Total Environment, 2020, 710:136384.
    [7] WANG C, LIU Y, LV W Z. Enhancement of nitrogen removal by supplementing fluidized-carriers into the aerobic tank in a full-scale A2/O system[J]. The Science of the Total Environment, 2019, 660:817-825.
    [8] JIANG L Y, LIU Y, GUO F J, et al. Evaluation of nutrient removal performance and resource recovery potential of anaerobic/anoxic/aerobic membrane bioreactor with limited aeration[J]. Bioresour Technol, 2021, 340:125728.
    [9] ZHAO W H, YONG Z, LV D M, et al. Advanced nitrogen and phosphorus removal in the pre-denitrification anaerobic/anoxic/aerobic nitrification sequence batch reactor (pre-A2NSBR) treating low carbon/nitrogen (C/N) wastewater[J]. Chemical Engineering Journal, 2016, 302:296-304.
    [10] WANG J, DU C, QIAN F, et al. Enhanced treatment of pharmaceutical wastewater by an improved A2/O process with ozone mixed municipal wastewater[J]. Water, 2020, 12(10):2771.
    [11] LIU H Y, LI H, FANG C R, et al. Removal of Di-n-butyl phthalate from aged leachate under optimal hydraulic condition of leachate treatment process and in the presence of its dominant bacterial strains[J]. Ecotoxicology and Environmental Safety, 2021, 222:112532.
    [12] TONG Y, WEI J L, MO R, et al. Photocatalytic microbial fuel cells and performance applications:a review[J]. Frontiers in Chemistry, 2022, 10:953434.
    [13] SHRIVASTAVA A, SHARMA R. Lignocellulosic biomass based microbial fuel cells:performance and applications[J]. Journal of Cleaner Production, 2022, 361:132269.
    [14] RAMYA M, PONNUSAMY S K. A review on recent advancements in bioenergy production using microbial fuel cells[J]. Chemosphere, 2021, 288:132512.
    [15] VIDHYESWARI D, SURENDHAR A, BHUVANESHWARI S S. General aspects and novel pems in microbial fuel cell technology:a review[J]. Chemosphere, 2022, 24:136454.
    [16] JIANG M H, XU T, CHEN S L. A mechanical rechargeable small-size microbial fuel cell with long-term and stable power output[J]. Applied Energy, 2020, 260:114336.
    [17] YOON J, AHN Y, SCHRODER U. Parylene C-coated PDMS-based microfluidic microbial fuel cells with low oxygen permeability[J]. Journal of Power Sources, 2018, 398:209-214.
    [18] XIAO B Y, LUO M, WANG X, et al. Electricity production and sludge reduction by integrating microbial fuel cells in anoxic-oxic process[J]. Waste Management, 2017, 69:346-352.
    [19] DUNG N, BABEL S. Insights on microbial fuel cells for sustainable biological nitrogen removal from wastewater:a review[J]. Environmental Research, 2021, 204:112095.
    [20] SRIVASTAVA P, YADAV A K, MISHRA B K. The effects of microbial fuel cell integration into constructed wetland on the performance of constructed wetland[J]. Bioresource Technology, 2015, 195:223-230.
    [21] LI Z, ZHANG X W, LIN J, et al. Azo dye treatment with simultaneous electricity production in an anaerobic-aerobic sequential reactor and microbial fuel cell coupled system[J]. Bioresource Technology, 2010, 101(12):4440-4445.
    [22] 侯登峰, 张皓驰, 李先宁. 微生物燃料电池对废水脱氮性能的影响因素综述[J]. 环境污染与防治, 2022, 44(8):1091-1096.
    [23] 郑琳姗, 张秀玲, 李惠雨, 等. 微生物燃料电池技术及其影响因素研究进展[J]. 精细化工, 2021, 38(1):1-8.
    [24] 付进南, 王晓慧, 海热提, 等. A2/O耦合MFC工艺的启动及C/N对其产电性能的影响[J]. 环境工程学报, 2015, 9(11):5369-5375.
    [25] 王存豹. 与A/O工艺相结合的双室MFC脱氮除碳及其产电性能的研究[D]. 杭州:浙江大学, 2016.
    [26] 吴伟杰. 类A/O式无膜微生物燃料电池处理生活污水的研究[D]. 哈尔滨:哈尔滨工业大学, 2012.
    [27] 刘睿, 王晓慧, 海热提, 等. 活性炭优化生物阴极提升微生物燃料电池产电性能[J]. 环境科学学报, 2015, 35(7):2059-2063.
    [28] 付进南. MFC耦合A2/O工艺产电及污水处理性能研究[D]. 北京:北京化工大学, 2015.
    [29] 张克, 田双超, 窦雪雁, 等. 厌氧/好氧生物接触氧化工艺耦合微生物燃料电池技术处理农村生活污水[J]. 环境工程, 2022, 40(3):139-146.
    [30] 高秀红, 刘子明, 曹玲, 等. A/O-MFC处理垃圾渗滤液与产电性能研究[J]. 应用化工, 2020, 49(2):402-405.
    [31] 高晟. 类A2/O生物阴极微生物燃料电池污水处理及污泥减量研究[D]. 哈尔滨:哈尔滨工业大学, 2014.
    [32] 刘睿, 高艳梅, 王晓慧, 等. 水力停留时间对MFC-A2/O工艺处理生活污水的影响[J]. 环境科学学报, 2017, 37(2):680-685.
    [33] 秦悦, 林小秋, 郑琳姗, 等. 电极改性强化微生物燃料电池产电同步降解有机污染物研究进展[J]. 精细化工, 2021, 38(9):1737-1745

    ,1756.
    [34] ARYAL R, BELTRAN D, LIU J. Effects of Ni nanoparticles, MWCNT, and MWCNT/Ni on the power production and the wastewater treatment of a microbial fuel cell[J]. International Journal of Green Energy, 2019, 16(15):1-9.
    [35] JIAN M J, XUE P, SHI K R, et al. Efficient degradation of indole by microbial fuel cell based Fe2O3-polyaniline-dopamine hybrid composite modified carbon felt anode[J]. Journal of Hazardous Materials, 2020, 388:122123-122132.
    [36] 罗帝洲, 许玫英, 杨永刚. 微生物燃料电池串并联研究及应用[J].环境化学, 2020, 39(8):2227-2236.
    [37] VILLASENOR J, CAPILLA P, RODRIGO M, et al. Operation of a horizontal subsurface flow constructed wetland:microbial fuel cell treating wastewater under different organic loading rates[J]. Water Research, 2013, 47(17):6731-6738.
    [38] ZHUANG L, YUAN Y, WANG Y Q, et al. Long-term evaluation of a 10-liter serpentine-type microbial fuel cell stack treating brewery wastewater[J]. Bioresource Technology, 2012, 123:406-412.
    [39] FANG Z, CAO X, LI X X, et al. Electrode and azo dye decolorization performance in microbial-fuel-cell-coupled constructed wetlands with different electrode size during long-term wastewater treatment[J]. Bioresource Technology, 2017, 238(4):450-460.
    [40] YU B, LIU C L, WANG S Y, et al. Applying constructed wetland-microbial electrochemical system to enhance NH4+ removal at low temperature[J]. Science of the Total Environment, 2020, 724:138017.
    [41] LI H, CAI Y, GU Z L, et al. Accumulation of sulfonamide resistance genes and bacterial community function prediction in microbial fuel cell-constructed wetland treating pharmaceutical wastewater[J]. Chemosphere, 2020, 248:126014.
    [42] 张逸驰, 蒋昭泓, 刘颖. 电化学活性微生物在微生物燃料电池阳极中的应用[J]. 分析化学, 2015, 43(1):155-163.
    [43] 牛雨薇. 微生物燃料电池细菌电子传递途径及产电机制研究[D]. 西安:西安建筑科技大学, 2020.
    [44] XIE B Z, LIU B J, YI Y, et al. Microbiological mechanism of the improved nitrogen and phosphorus removal by embedding microbial fuel cell in Anaerobic-Anoxic-Oxic wastewater treatment process[J]. Bioresource Technology, 2016, 207:109-117.
    [45] LIU R, TURSUN H, HOU X S, et al. Microbial community dynamics in a pilot-scale MFC-AA/O system treating domestic sewage[J]. Bioresource Technology, 2017, 241:439-447.
    [46] ALBERTSEN M, HANSEN B S, SAUNDERS A M, et al. A metagenome of a full-scale microbial community carrying out enhanced biological phosphorus removal[J]. ISME, 2012, 6 (6), 1094-1106.
    [47] MAO Y P, XIA Y, ZHANG T. Characterization of Thauera-dominated hydrogen oxidizing autotrophic denitrifying microbial communities by using high throughput sequencing[J]. Bioresource Technology, 2013, 128, 703-710.
    [48] LIU C M, LIU L, XU B, et al. Effects of inlet substrate and buffer concentrations on MFC performance[J]. Environmental Science & Technology, 2015, 38(2):48-51.
    [49] YUAN Y, ZHAO B, ZHOU S G, et al. Electrocatalytic activity of anodic biofilm responses to pH changes in microbial fuel cells[J]. Bioresource Technology, 2011, 102(13):6887-6891.
    [50] YAN X J, LEE H S, LI N, et al. The micro-niche of exoelectrogens influences bioelectricity generation in bioelectrochemical systems[J]. Renewable and Sustainable Energy Reviews, 2020, 134:110184.
    [51] LI M, WU H M, ZHANG J, et al. Nitrogen removal and nitrous oxide emission in surface flow constructed wetlands for treating sewage treatment plant effluent:effect of C/N ratios[J]. Bioresource Technology, 2017, 240:157-164.
    [52] VILLASENOR J, CAPILLA P, RODRIGO M A, et al. Operation of a horizontal subsurface flow constructed wetland-microbial fuel cell treating wastewater under different organic loading rates[J]. Water Res, 2013, 47(17):6731-6738.
    [53] WEN Y, CHEN Y, ZHENG N, et al. Effects of plant biomass on nitrate removal and transformation of carbon sources in subsurface-flow constructed wetlands[J]. Bioresource Technology, 2010, 101(19):7286-7292.
    [54] 李哲远. 分段进水双阴极MFC耦合A2/O工艺脱氮产电研究[D]. 西安:西安工程大学, 2020.
    [55] 郭泓利, 李鑫玮, 任钦毅, 等. 全国典型城市污水处理厂进水水质特征分析[J]. 给水排水, 2018, 54(6):12-15.
    [56] 陈杰云. 多级 A/O+好氧生物膜组合工艺特性及处理污水效能研究[D]. 重庆:重庆大学, 2013.
    [57] GUPTA R, BEKELE W, GHATAK A. Harvesting energy of interaction between bacteria and bacteriophage in a membrane-less fuel cell[J]. Bioresource Technology, 2013, 147:654-657.
    [58] LI X H, ZHU N W, WANG Y, et al. Animal carcass wastewater treatment and bioelectricity generation in up-flow tubular microbial fuel cells:effects of HRT and non-precious metallic catalyst[J]. Bioresource Technology, 2013, 128:454-460.
    [59] KIM B, CHANG I S. Elimination of voltage reversal in multiple membrane electrode assembly installed microbial fuel cells (mMEA-MFCs) stacking system by resistor control[J]. Bioresource Technology, 2018, 262:338-341.
    [60] LIU T, YU Y Y, LI D Z, et al. The effect of external resistance on biofilm formation and internal resistance in Shewanella inoculated microbial fuel cells[J]. RSC Advances, 2016, 6:20317-20323.
    [61] ZHANG F, HE Z. Simultaneous nitrification and denitrification with electricity generation in dual-cathode microbial fuel cells[J]. J Chem Technol Biotechnol, 2011, 87:153-159.
    [62] 荣宏伟, 王佳, 储昭瑞, 等. 外阻对双室微生物燃料电池性能的影响[J]. 水处理技术, 2019, 45(1):46-50.
    [63] 袁晓东. 基于A/O工艺的双室MFC脱氮除磷及产电性能的研究[D]. 张家口:河北建筑工程学院, 2020.
    [64] 陈青, 周顺桂, 袁勇, 等. 外阻对污泥微生物燃料电池产电以及有机物降解的影响[J]. 生态环境学报, 2011, 20(5):946-950.
    [65] 张建民, 李哲远, 崔心水, 等. 外电阻对双阴极微生物燃料电池脱氮产电性能的影响[J]. 环境工程学报, 2020, 14(7):1762-1770.
    [66] YUANG Y, ZHAO B, ZHOU S G, et al. Electrocatalytic activity of anodic biofilm responses to pH changes in microbial fuel cells[J]. Bioresource Technology, 2011, 102(13):6887-6891.
    [67] OLIVEIRA V B, SIMOES M, MELO L F, et al. Overview on the developments of microbial fuel cells[J]. Biochemical Engineering Journal, 2013, 73:53-64.
    [68] 张吉强. 微生物燃料电池同步脱氮产电性能及机理研究[D]. 杭州:浙江大学, 2014.
    [69] YANG N, REN Y P, LI X F, et al. Effect of short-term alkaline intervention on the performance of buffer-free single-chamber microbial fuel cell[J]. Bioelectrochemistry, 2017, 115:41-46.
    [70] YONGTAE A, BRUCE E L. Saline catholytes as alternatives to phosphate buffers in microbial fuel cells[J]. Bioresource Technology, 2013, 132:436-439.
    [71] OUYANG T C, HU X, SHI X M, et al. Mathematical modeling and performance evaluation of a cathodic bi-population microfluidic microbial fuel cell[J]. Energy Conversion and Management, 2022, 267(4):115900.
    [72] CLAUWAERT P, RABAEY K, AELTERMAN P, et al. Biological denitrification in microbial fuel cells[J]. Environ Sci Technol, 2007, 41:3354-3360.
    [73] KELLY P T, HE Z. Nutrients removal and recovery in bioelectrochemical systems:a review[J]. Bioresource Technology, 2014, 153:351-360.
    [74] ZHAO J Q, WU J N, LI X L, et al. The denitrification characteristics and microbial community in the cathode of an MFC with aerobic denitrification at high temperatures[J]. Frontiers in Microbiology, 2017, 8:9.
    [75] YU C P, LIANG Z, DAS A, et al. Nitrogen removal from wastewater using membrane aerated microbial fuel cell techniques[J]. Water Research, 2011, 45(3):1157-1164.
    [76] GUO J, CHENG J P, LI B B, et al. Performance and microbial community in the biocathode of microbial fuel cells under different dissolved oxygen concentrations[J]. Journal of Electroanalytical Chemistry, 2019, 833:433-440.
    [77] 赵俊娜. 低负荷运行时内回流比对A2/O工艺脱氮的影响[J]. 中国给水排水, 2022, 38(5):81-83.
    [78] 赵煜, 李鹏, 王晓斌, 等. 温度对微生物燃料电池电化学性能的影响[J]. 煤炭转化, 2012, 35(4):89-93.
    [79] JADHAV G S, GHANGREKAR M M. Performance of microbial fuel cell subjected to variation in pH, temperature, external load and substrate concentration[J]. Bioresource Technology, 2009, 100:717-723.
    [80] 刘志华, 刘春华, 夏畅斌, 等. 温度对淀粉酶强化污泥为燃料微生物燃料电池的影响[J]. 环境工程学报, 2014, 8(6):2543-2547.
  • 加载中
计量
  • 文章访问数:  97
  • HTML全文浏览量:  9
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-31
  • 网络出版日期:  2024-05-31

目录

    /

    返回文章
    返回