ANALYSIS OF OZONE POLLUTION SITUATION, CAUSES AND COUNTERMEASURES IN CHANGSHA IN 2019—2021
-
摘要: 臭氧(O3)对生态环境质量影响程度不断加深,统计发现,2019—2021年长沙市O3超标的高发时间为夏、秋季,总辐射量≥0.85 MJ/m2、最高气温≥32 ℃、相对湿度≤65%为长沙市O3生成较为有利的气象条件。利用基于观测的模型(OBM)模拟了污染高值时段长沙市3个站点区域的最优达标减排方案:环保学院站点区域应单独削减40%VOCs;高新区环保局站点区域应单独削减21%VOCs;马坡岭站点区域不具备达标条件,但单独削减VOCs可使O3浓度下降速度最快。因此在不利的气象条件下,有针对性地设计科学的减排方案,可以显著降低O3浓度。
-
关键词:
- 臭氧 /
- 污染成因 /
- 基于观测的模型(OBM) /
- 长沙
Abstract: The impact of ozone on the quality of ecological environment is deepening. Based on the ozone data from 2019 to 2021, ozone levels are more likely to exceed the standard during the summer and autumn. During the key period of ozone pollution, the total radiation ≥0.85 MJ/m2, the maximum temperature ≥32 ℃, and the relative humidity ≤65% are more effective meteorological conditions for ozone generation in Changsha. Based on the observation-based models (OBM), this work also presents the simulation of the optimal emission reduction scheme: the Changsha Environmental Protection Vocational College monitoring site area should separately reduce the proportion of VOCs by 40%; the Environmental Protection Bureau monitoring site area in the High-Tech Zone of Changsha should separately reduce the proportion of VOCs by 21%; the Mapoling monitoring site area can’t meet the standard, but separately reducing VOCs can lead to the fastest decrease in ozone concentration. Therefore, under adverse meteorological conditions, the O3 concentration can be significantly reduced by designing scientific emission reduction programs.-
Key words:
- ozone /
- cause of pollution /
- observation-based model (OBM) /
- Changsha
-
[1] 中国人民共和国生态环境部.2021年中国生态环境状况公报[R/OL].[2022-05-27]. https://www.mee.gov.cn/hjzl/sthjzk/zghjzkgb/202205/P020220608338202870777.pdf. [2] 林燕芬,王茜,伏晴艳,等.上海市臭氧污染时空分布及影响因素[J].中国环境监测,2017,33(4):60-67. [3] 刘妍妍,杨雷峰,谢丹平,等.湖南省臭氧污染基本特征分析及长期趋势变化主控因素识别[J].环境科学,2022,43(3):1246-1255. [4] WANG Y,GUO H,LYU X P,et al.Photochemical evolution of continental air masses and their influence on ozone formation over the South China[J].Science of the Total Environment,2019,673:424-434. [5] 郑镇森,窦建平,张国涛,等.华北工业城市夏季大气臭氧生成机制及减排策略[J].环境科学,2023,44(4):1821-1829. [6] 孔琴心,刘广仁,李桂忱.近地面臭氧浓度变化及其对人体健康的可能影响[J].气候与环境研究,1999(1):61-66. [7] 罗岳平,彭庆庆,金红红,等.衡阳市区和衡山背景站臭氧浓度变化规律的对比分析[J].中国环境监测,2019,35(3):100-108. [8] 严晓瑜,缑晓辉,杨婧,等.中国典型城市臭氧变化特征及其与气象条件的关系[J].高原气象,2020,39(2):416-430. [9] 洪莹莹,翁佳烽,谭浩波,等.珠江三角洲秋季典型O3污染的气象条件及贡献量化[J].中国环境科学,2021,41(1):1-10. [10] 常炉予,许建明,瞿元昊,等. 上海市臭氧污染的大气环流客观分型研究[J]. 环境科学学报,2019,39(1):169-179. [11] 余钟奇,马井会,毛卓成,等. 2017年上海臭氧污染气象条件分析及臭氧污染天气分型研究[J]. 气象与环境学报,2019,35(6):46-54. [12] 钟漂斯. 广州市黄埔区臭氧污染特征研究[D].广州:广州大学,2018. [13] 蒋美青,陆克定,苏榕,等.我国典型城市群O3污染成因和关键VOCs活性解析[J].科学通报,2018,63(12):1130-1141. [14] 丁华,郭卉,周国治,等.长沙市夏秋季VOCs特征及在臭氧生成中的作用研究[J].南京信息工程大学学报(自然科学版),2023,15(2):137-147. [15] CARTER W P L.Development of ozone reactivity scales for volatile organic compounds[J]. Air Waste Manag Assoc,1994,44:881-899. [16] SILLMAN S. The relation between ozone, NO<em>x and hydrocarbons in urban and polluted rural environments[J].Atmospheric Environment, 1999, 33:1821-1845.
点击查看大图
计量
- 文章访问数: 133
- HTML全文浏览量: 10
- PDF下载量: 13
- 被引次数: 0