INFLUENCE OF ELECTRODE CONFIGURATION AND PARAMETERS ON ELECTRIC FIELD AND DUST REMOVAL PERFORMANCE OF POROUS ELECTRODE ESP
-
摘要: 工业电除尘器受反电晕、微细颗粒捕集效率低等因素影响使超低排放运行过程不稳定,故采用开孔式收尘极板并优化极配形式与参数以减缓上述问题发生,并保证电除尘器高效稳定运行。通过COMSOL Multiphysics模拟试验研究了不同同极间距、线距、板形、线形对电场与除尘性能的影响。结果表明:500 mm同极间距利于高比电阻粉尘捕集。最佳线距处于同极间距的0.5~1倍范围内,此时板表面平均电流密度最大。4种多孔板结构对反电晕现象均有一定的减缓作用,错孔板结构收尘场强最大,除尘性能最优;空腔内增加极板对0.01~0.1 μm微细颗粒物捕集效率提升16%。4种线形中,新型鱼骨线除尘性能优于其他线形,采用错孔式收尘极板与新型鱼骨线相配时,除尘区域内收尘场强最佳,颗粒物理论有效驱进速度较其他极配形式提升47%,减少了电除尘器的投资成本和运行费用。该研究结果可为多孔电极电除尘器在超低排放设计应用中提供参考。Abstract: The industrial ESP is affected by the problems of anti-corona and low collection efficiency on ultrafine particles, resulting in its unstable operation performance for ultra-low emission. Adopting the porous dust collecting plate and optimizing the electrode configurations and parameters can all alleviate the above problems to ensure the efficient and stable operation of ESP. Through the COMSOL Multiphysics simulation test, the effects of different plate-plate distance, wire-wire distance, plate shape, and line shape on electric field and dust removal performance were studied. The results showed that 500 mm plate-plate distance was conducive for high specific resistance collection. When the optimum line spacing was 0.5 to 1 times of the plate-plate spacing, the average current density on the surface of the plate was the highest. The four kinds of porous plates all had a slowing effect on the anti-corona phenomenon, and the cross-porous plate had the largest dust field strength and the best dust removal performance. Adding a plate in the cavity increased the collection efficiency of fine particles (0.01 μm to 0.1 μm) by 16%. The dust removal performance of the new fishbone line was better than other lines. When the cross-hole dust collecting plate was matched with the new fishbone line, the dust field strength in the dust collecting area was the highest, and its theoretical effective driving speed of particulate matter was 47% higher than other electrode configuration, which reduced investment and running cost of the ESP. The research results can provide a reference for the design and application of PDCE-ESP for ultra-low emission.
-
[1] GARCÍA D F J,DÍAZ J,GARCÍA J,et al. A complete control system for a high voltage converter in an electrostatic precipitator[J]. Electronics, 2021, 10(13):1554-1554. [2] WHITE H J. Industrial Electrostatic Precipitation[M]. MA:Addison Wesley, 1963. [3] 黎在时.电除尘器的选型安装与运作管理[M].北京:中国电力出版社,2005. [4] 高梦翔,姚鑫,朱勇,等.双区静电除尘器的数值模拟研究[J].中国环境科学,2018,38(10):3698-3703. [5] 姚宇平,刘含笑,奚力强,等.基于电除尘器的烟尘超低排放技术研究[J].环境工程,2018,36(7):81-86. [6] CORNETTE J F.P,COPPIETERS T,LEPAUMIER H,et al. Particulate matter emission reduction in small- and medium-scale biomass boilers equipped with flue gas condensers:field measurements[J]. Biomass and Bioenergy, 2021, 148(6):106056. [7] 赵海宝,何毓忠,章永玮,等.复杂多变工况下低低温电除尘适应性研究[J].环境工程,2018,36(6):82-85. [8] SHEN Y R, TONG Y Q, ZHAO Y H, et al. Experimental and computational study on the separation performance of an electrostatic precipitator with curved transvers collecting plates[J]. Advanced Powder Technology, 2021,32(6):1858-1868. [9] EBOREIME O, ALI M, ALAM K, et al. Novel cross-flow electrostatic precipitator:numerical and experimental study[J]. Journal of the Air & Waste Management Association, 2021, 71(4):447-461. [10] CHOI H Y, PARK Y G Y. Numerical simulation of the wavy collecting plate effects on the performance of an electrostatic precipitator[J]. Powder Technology, 2021,382:232-243. [11] 高光前,党小庆,丁磊,等.横置极板电除尘器电场性能优化[J].环境工程,2018,36(12):145-150. [12] LONG Z W.YAO Q,SONG Q, et al. Three-dimensional simulation of electric field and space charge in the advanced hybrid particulate collector[J]. Journal of Electrostatics, 2009, 67(6):835-843. [13] 龙正伟,宋蔷,李水清,等.复合式电袋除尘器的伏安特性[J].中国电机工程学报,2010,30(14):13-20. [14] TSRONG Y W, IGOR K, ALEXANDER V M. Reduction of aerosol particulates through the use of an electrostatic precipitator with guidance-plate-covered collecting electrodes[J]. Journal of Aerosol Science, 2015, 79:40-47. [15] TSRONG Y W, IGOR K, ALEXANDER V M. Numerical study of electrostatic precipitators with novel particle-trapping mechanism[J]. Journal of Aerosol Science, 2016, 95:95-103. [16] 张金龙,党小庆,乐文毅,等.多孔收尘电极电场中荷电粒子的沉降规律及其除尘性能预测[J].环境工程学报,2022,16(5):1589-1601. [17] 李庆,侯雪超,张文婷,等.电极结构对离子风流场影响的数值模拟[J].高电压技术,2020,46(12):4334-4340. [18] 李庆,张文婷,侯雪超,等.静电除尘极配方式对烧结机头微细粉尘收集效率的影响分析[J].高电压技术,2021,47(1):346-352. [19] HE Z J, E.T. M D, GIRISH K.Design of electrostatic precipitator to remove suspended micro particulate matter from gas turbine inlet airflow:Part Ⅰ. Experimental study[J]. Journal of Aerosol Science, 2017, 108:14-28. [20] YAMAMOTO T. Effects of turbulence and electrohydrodynamics on the performance of electrostatic precipitators[J]. Journal of Electrostatics,1989,22(1):11-22. [21] OGLESBY S J, NICHOLS G. Electrostatic Precipitation[M]. New York:Marcel Dekker Inc, 1978. [22] 张建平,陈思艺,王帅,等.扩散荷电对两种ESP除尘性能影响的对比分析[J].环境工程,2019,37(8):143-147. [23] CHEN B, LI H J, HE Y Z, et al. Study on performance of electrostatic precipitator under multi-physics coupling[J]. Environmental Science and Pollution Research International, 2019, 26(34):35023-35033. [24] PENNEY G W, MATICK R E. Potentials in D-C corona fields[J].American Institute of Electrical Engineers, Part Ⅰ:Communication and Electronics, Transactions of the, 1960, 79(2):91-99. [25] LAWLESS P A, SPARK L E.A mathematical model for calculating effects of back corona in wire-duct electrostatic precipitators[J]. Journal of Applied Physics, 1980, 51(1):242-256. [26] WANG Y F, ZHANG H, GAO W C, et al. Improving the removal of particles via electrostatic precipitator by optimizing the corona wire arrangement[J]. Powder Technology, 2021, 388:201-211. 期刊类型引用(26)
1. 黄晓波,刘冠伦,梁永贤,颜敏. 深圳市道路扬尘排放因子研究. 广东化工. 2024(08): 93-95 . 百度学术
2. 肖扬,姬亚芹,王淼,赵静琦,高玉宗,杨益,杨夏微,王冰冰,李景,丛晓晓. 西宁市道路扬尘排放清单及时空分布特征. 环境化学. 2024(04): 1167-1176 . 百度学术
3. 王毅东,王明娅,韩桥,李梦飞,王文钜,张雪纯,熊钦卿,张春辉,姜凤成,王明仕. 安阳市夏季道路积尘水溶性离子污染特征及来源分析. 环境化学. 2023(07): 2328-2339 . 百度学术
4. 张发闯,熊远明,杜成松,蒋宇,汪永东,周敬,印红玲. 不同清扫作业方式与道路积尘/扬尘的关系. 环境卫生工程. 2023(06): 97-104 . 百度学术
5. 刘扬,王颖,刘灏,秦闯,王思潼,李博,郭春晔. 基于WRF-Chem模拟验证的天水市主城区大气污染源排放清单. 中国环境科学. 2022(01): 32-42 . 百度学术
6. 王海斌,樊守彬,韩力慧,李婷婷,曲松,崔浩然,刘俊芳. 北京市通州区秋季典型工地出口道路尘负荷排放特征. 环境工程技术学报. 2022(01): 6-14 . 百度学术
7. 马彤,巴利萌,孙璐萍,刘佳媛,王杰,程晓夏,郑易飞,高健. 基于光散射快速检测法的渭南市道路积尘研究. 大气与环境光学学报. 2022(03): 336-346 . 百度学术
8. 杨乃旺,宋文斌,闫东杰,宋雪娟,杨玉林,夏永军. 基于积尘负荷的西安市铺装道路扬尘排放研究. 环境科学学报. 2021(04): 1259-1266 . 百度学术
9. 刘俊芳,樊守彬,郭秀锐,崔浩然,申亚倩. 基于车载移动监测的北京市丰台区道路扬尘源排放特征. 环境科学学报. 2021(11): 4423-4429 . 百度学术
10. 张金,姬亚芹,邢雅彤,吕帅,丁江颖,赵静琦. 天津市高校夏季道路扬尘PM_(2.5)中水溶性离子污染特征及来源. 环境科学学报. 2020(05): 1604-1610 . 百度学术
11. 亓浩雲,樊守彬,王凯. 北京市不同功能区冬季道路扬尘排放特征. 环境工程技术学报. 2020(03): 323-329 . 百度学术
12. 晁娜,蒋琦清,朱俊,杨强,滕富华,吴建,陈加山. 省级高空间分辨率扬尘源排放清单研究. 中国环境监测. 2020(05): 63-71 . 百度学术
13. 郭硕,肖捷颖,安塞,周盼,秦伟,刘娟,姬亚芹. 利用快速检测法研究石家庄道路交通扬尘排放特征. 环境污染与防治. 2019(02): 206-210 . 百度学术
14. 赵静琦,姬亚芹,李越洋,张蕾,王士宝. 天津市道路车流量特征分析. 环境科学研究. 2019(03): 399-405 . 百度学术
15. 鲁朝旭. 南充市大气颗粒物(PM_(2.5))污染研究. 绿色科技. 2019(06): 102-105 . 百度学术
16. 竹涛,王若男,袁前程,刘笑阳,张星,刘海兵,刘锋. 基于积尘负荷法对北京市铺装道路扬尘排放清单的研究. 太原理工大学学报. 2019(04): 503-509 . 百度学术
17. 乔玉红,叶芝祥,杨怀金,张罡. 成都市铺装道路积尘碳组分特征及排放因子研究. 四川环境. 2019(05): 7-13 . 百度学术
18. 周盼,秦伟,郭硕,安塞,肖捷颖,刘娟,姬亚芹. 石家庄冬季道路积尘水溶性离子污染特征及来源分析. 环境化学. 2018(05): 952-958 . 百度学术
19. 王士宝,姬亚芹,张伟,张蕾,赵静琦,李越洋. 乌鲁木齐道路扬尘PM_(2.5)粒度乘数特征. 环境科学研究. 2018(07): 1201-1206 . 百度学术
20. 赵静琦,姬亚芹,张蕾,王士宝,李越洋. 基于样方法的天津市春季道路扬尘PM_(2.5)中水溶性离子特征及来源解析. 环境科学. 2018(05): 1994-1999 . 百度学术
21. 舒丽,罗彬,胡健,夏杰,张凌云,罗斌,钟利健,张自全. 南充市大气PM_(10)与PM_(2.5)排放清单及特征. 中国环境监测. 2018(03): 84-92 . 百度学术
22. 祝嘉欣,成海容,虎彩娇,王祖武. 武汉市道路扬尘源排放清单及空间分布特征研究. 南京信息工程大学学报(自然科学版). 2018(05): 557-562 . 百度学术
23. 周子航,邓也,谭钦文,吴柯颖,杨欣悦,周小玲. 四川省人为源大气污染物排放清单及特征. 环境科学. 2018(12): 5344-5358 . 百度学术
24. TANG Ying-Xiao,LIAO Hong,FENG Jin. Estimating emissions and concentrations of road dust aerosol over China using the GEOS-Chem model. Atmospheric and Oceanic Science Letters. 2017(04): 298-305 . 必应学术
25. 李树立,姬亚芹,朱振宇,张诗建,张伟,赵静波. 天津市秋季道路降尘粒度乘数的分布特征. 环境化学. 2017(03): 480-485 . 百度学术
26. 张伟,姬亚芹,张军,张蕾,王伟,王士宝. 辽宁典型城市道路扬尘PM_(2.5)中水溶性无机离子组分特征及来源解析. 环境科学. 2017(12): 4951-4957 . 百度学术
其他类型引用(26)
-

计量
- 文章访问数: 133
- HTML全文浏览量: 14
- PDF下载量: 5
- 被引次数: 52