INFLUENCE OF ELECTRODE CONFIGURATION AND PARAMETERS ON ELECTRIC FIELD AND DUST REMOVAL PERFORMANCE OF POROUS ELECTRODE ESP
-
摘要: 工业电除尘器受反电晕、微细颗粒捕集效率低等因素影响使超低排放运行过程不稳定,故采用开孔式收尘极板并优化极配形式与参数以减缓上述问题发生,并保证电除尘器高效稳定运行。通过COMSOL Multiphysics模拟试验研究了不同同极间距、线距、板形、线形对电场与除尘性能的影响。结果表明:500 mm同极间距利于高比电阻粉尘捕集。最佳线距处于同极间距的0.5~1倍范围内,此时板表面平均电流密度最大。4种多孔板结构对反电晕现象均有一定的减缓作用,错孔板结构收尘场强最大,除尘性能最优;空腔内增加极板对0.01~0.1 μm微细颗粒物捕集效率提升16%。4种线形中,新型鱼骨线除尘性能优于其他线形,采用错孔式收尘极板与新型鱼骨线相配时,除尘区域内收尘场强最佳,颗粒物理论有效驱进速度较其他极配形式提升47%,减少了电除尘器的投资成本和运行费用。该研究结果可为多孔电极电除尘器在超低排放设计应用中提供参考。Abstract: The industrial ESP is affected by the problems of anti-corona and low collection efficiency on ultrafine particles, resulting in its unstable operation performance for ultra-low emission. Adopting the porous dust collecting plate and optimizing the electrode configurations and parameters can all alleviate the above problems to ensure the efficient and stable operation of ESP. Through the COMSOL Multiphysics simulation test, the effects of different plate-plate distance, wire-wire distance, plate shape, and line shape on electric field and dust removal performance were studied. The results showed that 500 mm plate-plate distance was conducive for high specific resistance collection. When the optimum line spacing was 0.5 to 1 times of the plate-plate spacing, the average current density on the surface of the plate was the highest. The four kinds of porous plates all had a slowing effect on the anti-corona phenomenon, and the cross-porous plate had the largest dust field strength and the best dust removal performance. Adding a plate in the cavity increased the collection efficiency of fine particles (0.01 μm to 0.1 μm) by 16%. The dust removal performance of the new fishbone line was better than other lines. When the cross-hole dust collecting plate was matched with the new fishbone line, the dust field strength in the dust collecting area was the highest, and its theoretical effective driving speed of particulate matter was 47% higher than other electrode configuration, which reduced investment and running cost of the ESP. The research results can provide a reference for the design and application of PDCE-ESP for ultra-low emission.
-
[1] GARCÍA D F J,DÍAZ J,GARCÍA J,et al. A complete control system for a high voltage converter in an electrostatic precipitator[J]. Electronics, 2021, 10(13):1554-1554. [2] WHITE H J. Industrial Electrostatic Precipitation[M]. MA:Addison Wesley, 1963. [3] 黎在时.电除尘器的选型安装与运作管理[M].北京:中国电力出版社,2005. [4] 高梦翔,姚鑫,朱勇,等.双区静电除尘器的数值模拟研究[J].中国环境科学,2018,38(10):3698-3703. [5] 姚宇平,刘含笑,奚力强,等.基于电除尘器的烟尘超低排放技术研究[J].环境工程,2018,36(7):81-86. [6] CORNETTE J F.P,COPPIETERS T,LEPAUMIER H,et al. Particulate matter emission reduction in small- and medium-scale biomass boilers equipped with flue gas condensers:field measurements[J]. Biomass and Bioenergy, 2021, 148(6):106056. [7] 赵海宝,何毓忠,章永玮,等.复杂多变工况下低低温电除尘适应性研究[J].环境工程,2018,36(6):82-85. [8] SHEN Y R, TONG Y Q, ZHAO Y H, et al. Experimental and computational study on the separation performance of an electrostatic precipitator with curved transvers collecting plates[J]. Advanced Powder Technology, 2021,32(6):1858-1868. [9] EBOREIME O, ALI M, ALAM K, et al. Novel cross-flow electrostatic precipitator:numerical and experimental study[J]. Journal of the Air & Waste Management Association, 2021, 71(4):447-461. [10] CHOI H Y, PARK Y G Y. Numerical simulation of the wavy collecting plate effects on the performance of an electrostatic precipitator[J]. Powder Technology, 2021,382:232-243. [11] 高光前,党小庆,丁磊,等.横置极板电除尘器电场性能优化[J].环境工程,2018,36(12):145-150. [12] LONG Z W.YAO Q,SONG Q, et al. Three-dimensional simulation of electric field and space charge in the advanced hybrid particulate collector[J]. Journal of Electrostatics, 2009, 67(6):835-843. [13] 龙正伟,宋蔷,李水清,等.复合式电袋除尘器的伏安特性[J].中国电机工程学报,2010,30(14):13-20. [14] TSRONG Y W, IGOR K, ALEXANDER V M. Reduction of aerosol particulates through the use of an electrostatic precipitator with guidance-plate-covered collecting electrodes[J]. Journal of Aerosol Science, 2015, 79:40-47. [15] TSRONG Y W, IGOR K, ALEXANDER V M. Numerical study of electrostatic precipitators with novel particle-trapping mechanism[J]. Journal of Aerosol Science, 2016, 95:95-103. [16] 张金龙,党小庆,乐文毅,等.多孔收尘电极电场中荷电粒子的沉降规律及其除尘性能预测[J].环境工程学报,2022,16(5):1589-1601. [17] 李庆,侯雪超,张文婷,等.电极结构对离子风流场影响的数值模拟[J].高电压技术,2020,46(12):4334-4340. [18] 李庆,张文婷,侯雪超,等.静电除尘极配方式对烧结机头微细粉尘收集效率的影响分析[J].高电压技术,2021,47(1):346-352. [19] HE Z J, E.T. M D, GIRISH K.Design of electrostatic precipitator to remove suspended micro particulate matter from gas turbine inlet airflow:Part Ⅰ. Experimental study[J]. Journal of Aerosol Science, 2017, 108:14-28. [20] YAMAMOTO T. Effects of turbulence and electrohydrodynamics on the performance of electrostatic precipitators[J]. Journal of Electrostatics,1989,22(1):11-22. [21] OGLESBY S J, NICHOLS G. Electrostatic Precipitation[M]. New York:Marcel Dekker Inc, 1978. [22] 张建平,陈思艺,王帅,等.扩散荷电对两种ESP除尘性能影响的对比分析[J].环境工程,2019,37(8):143-147. [23] CHEN B, LI H J, HE Y Z, et al. Study on performance of electrostatic precipitator under multi-physics coupling[J]. Environmental Science and Pollution Research International, 2019, 26(34):35023-35033. [24] PENNEY G W, MATICK R E. Potentials in D-C corona fields[J].American Institute of Electrical Engineers, Part Ⅰ:Communication and Electronics, Transactions of the, 1960, 79(2):91-99. [25] LAWLESS P A, SPARK L E.A mathematical model for calculating effects of back corona in wire-duct electrostatic precipitators[J]. Journal of Applied Physics, 1980, 51(1):242-256. [26] WANG Y F, ZHANG H, GAO W C, et al. Improving the removal of particles via electrostatic precipitator by optimizing the corona wire arrangement[J]. Powder Technology, 2021, 388:201-211.
点击查看大图
计量
- 文章访问数: 92
- HTML全文浏览量: 10
- PDF下载量: 5
- 被引次数: 0