COUPLING H2-RICH SYNGAS BIOMETHANATION WITH ANAEROBIC DIGESTION OF FOOD WASTE: A PERFORMANCE ANALYSIS
-
摘要: 提出利用餐厨垃圾轻物质生产富氢合成气,并将富氢合成气生物甲烷化与现有餐厨垃圾厌氧消化单元耦合的工艺路线,为评估其可行性,考察了耦合系统的长期运行性能,并分析了该系统提升现有甲烷(CH4)产量的潜力。结果表明:在餐厨垃圾有机负荷(以挥发性固体质量计)为0.5~2.0 g/(L·d)、富氢合成气流量为0~5.28 L/d条件下,餐厨垃圾厌氧消化与富氢合成气生物甲烷化均能保持稳定运行,且沼气提纯效果明显,尤其在餐厨垃圾有机负荷为0.5,1.0 g/(L·d)时,产品气中CH4的平均含量分别高达96.4%和86.6%;提高富氢合成气生物甲烷化速率以及优化调控反应体系的pH值、有效碱度和有机酸积累量有助于进一步提高该耦合系统的处理能力和运行稳定性;以300 t/d餐厨垃圾处理厂为例,该耦合系统预计能提高94.5%的CH4产量,后续有必要结合成本效益分析,进一步评估该耦合工艺的工业化应用潜力。Abstract: This paper proposed utilizing light fractions of food waste (FW) to produce H2-rich syngas, followed by coupling of H2-rich syngas biomethanation with FW anaerobic digestion. A feasibility study was conducted to evaluate the long-term performance of the coupled system of H2-rich syngas biomethanation and FW anaerobic digestion, as well as its potential in increasing methane production. Both FW anaerobic digestion and H2-rich syngas biomethanation showed stable performance under conditions of FW organic load (in volatile solids) of 0.5 to 2.0 g/(L·d) and H2-rich syngas flow rate of 0 to 5.28 L/d. Moreover, the biogas was upgraded, particularly when the FW organic load was 0.5 g/(L·d) and 1.0 g/(L·d), as the average CH4 content in the product gas reached 96.4% and 86.6%, respectively. Increasing the biomethanation rate in H2-rich syngas and regulating the pH value, effective alkalinity, and organic acid accumulation in the reactor would further improve the treatment capacity and operational stability of the coupled system. The coupling system was expected to increase methane production by 94.5% at a 300 t/d FW treatment plant. A cost-benefit analysis is required to further evaluate the industrial application potential of this coupling process.
-
Key words:
- food waste (FW) /
- H2-rich syngas /
- biomethanation /
- anaerobic digestion /
- biogas upgrading
-
[1] 唐心漪,陈翔宇,益唐心漪,等. 剩余污泥热碱处理及其对污泥厌氧消化的强化研究进展[J].环境工程,2022,40(5):218-226. [2] 李续磊,王铮,常风民,等. 园林废弃物与餐厨厌氧沼渣混合热解特性及动力学分析[J]. 环境工程学报,2022,16(9):2992-2999. [3] CHAKRABORTY D, KARTHIKEYAN O P, SELVAM A, et al. Two-phase anaerobic digestion of food waste:effect of semi-continuous feeding on acidogenesis and methane production[J]. Bioresource Technology,2022,346:126396. [4] PANIAGUA S, LEBRERO R, MUÑOZ R. Syngas biomethanation:current state and future perspectives[J]. Bioresource Technology,2022,358:127436. [5] 李茜茜,冯俊小. 有机固废热解动力学的研究进展[J].环境工程,2022,40(10):215-223. [6] 张藤元,冯俊小,冯龙. 基于Aspen Plus的生活垃圾热解气化模拟及正交优化[J].环境工程,2022,40(2):113-119. [7] SIKARWAR V S, POHOŘELY M, MEERS E, et al. Potential of coupling anaerobic digestion with thermochemical technologies for waste valorization[J]. Fuel,2021,294:120533. [8] ANGENENT L T, USACK J G, XU J, et al. Integrating electrochemical, biological, physical, and thermochemical process units to expand the applicability of anaerobic digestion[J]. Bioresource Technology,2018,247:1085-1094. [9] XU H, WANG K J, ZHANG X Q, et al. Application of in-situ H2-assisted biogas upgrading in high-rate anaerobic wastewater treatment[J]. Bioresource Technology,2020,299:122598. [10] 颜锟,徐恒,崔康平,等. 厌氧微生物对CO的降解转化特性研究[J]. 中国沼气,2017,35(1):3-8. [11] ANDREIDES D,POKORNA D,ZABRANSKA J. Assessing the syngas biomethanation in anaerobic sludge digestion under different syngas loading rates and homogenization[J]. Fuel,2022,320:123929. [12] LI Y Q,LIU Y J,WANG X M, et al. Biomethanation of syngas at high CO concentration in a continuous mode[J]. Bioresource Technology,2022,346:126407. [13] LI C X,ZHU X X,ANGELIDAKI I, et al. Carbon monoxide conversion and syngas biomethanation mediated by different mi-crobial consortia[J]. Bioresource Technology,2020,314:123739. [14] ZHANG Z W, DING C, WANG L Y, et al. CO biomethanation with different anaerobic granular sludges[J]. Waste and Biomass Valorization,2021,12(7):3913-3925. [15] CHA S, LIM H G, KWON S, et al. Design of mutualistic microbial consortia for stable conversion of carbon monoxide to value-added chemicals[J]. Metabolic Engineering,2021,64:146-153. [16] ASIMAKOPOULOS K, KAUFMANN-ELFANG M, LUNDHOLM-HØFFNER C, et al. Scale up study of a thermophilic trickle bed reactor performing syngas biomethanation[J]. Applied Energy,2021,290:116771. [17] ASIMAKOPOULOS K, GAVALA H N, SKIADAS I V. Reactor systems for syngas fermentation processes:a review[J]. Chemical Engineering Journal,2018,348:732-744. [18] LI C, ZHU X, ANGELIDAKI I. Syngas biomethanation:effect of biomass-gas ratio, syngas composition, and pH buffer[J]. Bioresource Technology,2021,342:125997. [19] SUN H X, YANG Z Y, ZHAO Q, et al. Modification and extension of anaerobic digestion model No. 1 (ADM1) for syngas biomethanation simulation:from lab-scale to pilot-scale[J]. Chemical Engineering Journal,2021,403:126177. [20] 黄博.餐厨垃圾分选有机废物热解特性及示范工程研究[D]. 北京:北京化工大学,2017. [21] LIU C L, ZHAO Z H, LUO J, et al. Hydrogen-rich syngas production by the three-dimensional structure of LaNiO3 catalyst from a blend of acetic acid and acetone as a bio-oil model compound[J]. International Journal of Hydrogen Energy,2022,47(34):15160-15174. [22] PARK J G, KWON H J, CHEON A I, et al. Jet-nozzle based improvement of dissolved H2 concentration for efficient in-situ biogas upgrading in an up-flow anaerobic sludge blanket (UASB) reactor[J]. Renewable Energy,2021,168:270-279. [23] HAWKES F R, GUWY A J, HAWKES D L, et al. On-line monitoring of anaerobic digestion:application of a device for continuous measurement of bicarbonate alkalinity[J]. Water Science & Technology,1994,30(12):1-10. [24] GUIOT S R, CIMPOIA R, CARAYON G. Potential of wastewater-treating anaerobic granules for biomethanation of synthesis gas[J]. Environmental Science & Technology,2011,45(5):2006-2012. [25] FU S F, ANGELIDAKI I, ZHANG Y F. In situ biogas upgrading by CO2-to-CH4 bioconversion[J]. Trends in Biotechnology,2021,39(4):336-347. [26] 赵明明,李夕耀,李璐凯,等. 碱度类型及浓度对剩余污泥中温厌氧消化的影响[J]. 中国环境科学,2019,39(5):1954-1960. [27] GAVALA H N, GRIMALT-ALEMANY A, ASIMAKOPOULOS K, et al. Gas biological conversions:the potential of syngas and carbon dioxide as production platforms[J]. Waste and Biomass Valorization,2021,12(10):5303-5328. [28] 张振文. 基于生物质气化合成气利用的CO生物甲烷化[D]. 杭州:浙江大学,2020.
点击查看大图
计量
- 文章访问数: 73
- HTML全文浏览量: 14
- PDF下载量: 4
- 被引次数: 0