PREPARATION OF ACTIVATED CARBON FROM HAWTHORN SEED VIA TWO-STEP PYROLYSIS-CO2 ACTIVATION METHOD FOR ADSORPTION OF LOMEFLOXACIN FROM AQUEOUS SOLUTION
-
摘要: 以山楂核为原料,通过热解炭化-CO2活化两步法制备颗粒活性炭。基于热重分析-傅里叶红外光谱联用技术(TG-FTIR),研究了山楂核的热解炭化和山楂核炭化物的CO2气化特性,对山楂核炭化物和活性炭的物理化学性质进行了表征和比较,研究了活性炭对水中洛美沙星的吸附等温线模型,并设计了一种新型悬浮式活性炭吸附袋,模拟了其净化洛美沙星污染水体的应用场景。结果表明:山楂核的主要热解温度区间为230~420 ℃,挥发性热解产物主要为CO2、乙酸、糠醛、左旋葡萄糖。山楂核炭与CO2之间的气化反应的起始温度为850 ℃,主要产物为CO。当炭化温度为600 ℃,炭化时间为120 min,活化温度为900 ℃,活化时间为90 min,CO2流量为200 mL/min,活性炭的比表面积和总孔体积分别达到870 m2/g和0.483 cm3/g。活性炭对洛美沙星吸附过程可用Langmuir模型描述,其最大单分子层吸附量为137 mg/g。在静置条件下,悬浮式活性炭吸附袋可有效去除水中洛美沙星,其吸附动力学符合拟二级动力学模型。Abstract: Activated carbon was prepared from hawthorn seed via a two-step pyrolysis-CO2 activation method. Pyrolysis of hawthorn seed and CO2 gasification of hawthorn seed char was investigated by thermogravimetric analysis coupled with Fourier transform infrared spectroscopy. The activated carbon was characterized by scanning electron microscopy, N2 adsorption-desorption, X-ray diffraction, Raman spectroscopy, and Fourier transform infrared spectroscopy. The adsorption behavior of the activated carbon for the removal of lomefloxacin from aqueous solution was investigated. Moreover, a novel adsorption bag was designed based on the activated carbon, and the adsorption bag suspended in water was applied for the removal of lomefloxacin. The results showed that pyrolysis of hawthorn seed mainly occurred between 230 and 420 ℃, leading to the release of CO2, acetic acid, furfural, and levoglucose. The dominant CO2 gasification process started at above 850 ℃. The surface area and total pore volume of activated carbon achieved 870 m2/g and 0.483 cm3/g, respectively, under the condition of 600 ℃ for carbonization temperature, 120 min for carbonization time, 900 ℃ for activation temperature, 90 min for activation time, 200 mL/min for CO2 flow rate. The adsorption isotherm of activated carbon for lomefloxacin followed the Langmuir isotherm model with the maximum monolayer adsorption capacity of 137 mg/g. The suspended adsorption bag effectively removed lomefloxacin from still water, and the adsorption kinetics followed pseudo-second kinetics model.
-
Key words:
- hawthorn seed /
- activated carbon /
- pyrolysis /
- CO2 activation /
- lomefloxacin
-
[1] 陈悦,史静,杜琼,等.洛美沙星和镁离子共存体系下载锆生物炭的吸附特性[J]. 科学技术与工程,2019,19(18):375-379. [2] SENATHIRAJA T,LOLLA S A,SINGH Y,et al. Adsorption of selective fluoroquinolones by cysteine modified silane magnetic nanocomposite from the aqueous phase[J]. International Journal of Environmental Science and Technology, 2023,20(3):2673-2682. [3] HOU S Y, ZHANG Y Q, QIN G W, et al. Designing degradable lignin-grafted magnetic nano-composite materials for cost-effectively sustainable removal of fluoroquinolone antibiotics from environmental water[J]. Journal of Cleaner Production, 2022, 360:132215. [4] SUN Y, HAN Z L, ZHANG X, et al. Efficient removal of lomefloxacin by Z-scheme MrGO/Ag2WO4 heterojunction recyclable composite under visible light:mechanism of adsorption and photodegradation[J]. Journal of Environmental Chemical Engineering, 2022, 10:107120. [5] 刘总堂,邵江,李艳,等.碱改性小麦秸秆生物炭对水中四环素的吸附性能[J].中国环境科学, 2022, 42(8):3736-3743. [6] 李雪冰,付浩,林朋飞,等.水中典型磺胺类抗生素的活性炭吸附性质探究[J].给水排水, 2016, 42(1):36-41. [7] 刘旭静,李明飞.农业废弃物制备活性炭的研究进展[J]. 高分子通报, 2021(7):33-42. [8] 李德强,李君,张玲.农业废弃物活性炭制备及其对染料废水的吸附研究进展[J].工业用水与废水, 2018, 49(3):1-5. [9] LI Z, LI Y H, ZHU J. Straw-based activated carbon:optimization of the preparation procedure and performance of volatile organic compounds adsorption[J]. Materials, 2021, 14:3284. [10] LAN D W, CHEN M Y, LIU Y S, et al. Preparation and characterization of high value-added activated carbon derived from biowaste walnut shell by KOH activation for supercapacitor electrode[J]. Journal of Materials Science:Materials in Electronics, 2020, 31:18541-18553. [11] FAN Y R, ZHENG C L, HOU H B. Preparation of granular activated carbon and its mechanism in the removal of isoniazid, sulfamethoxazole, thiamphenicol, and doxycycline from aqueous solution[J]. Environmental Engineering Science, 2019, 36:1027-1040. [12] 李文秀,陈仁燕,范俊刚,等. 稻壳活性炭对噻吩类硫化物的吸附[J]. 环境工程学报, 2016, 10(10):5808-5814. [13] XING X J, JIANG W, LI S, et al. Preparation and analysis of straw-activated carbon synergetic catalyzed by ZnCl2-H3PO4 through hydrothermal carbonization combined with ultrasonic assisted immersion pyrolysis[J]. Waste Management, 2019, 89:64-72. [14] 王俊芝,袁熙超,罗思义,等. 山楂核热解特性及其产物研究[J]. 生物质化学工程, 2018, 52(5):37-40. [15] ZHAO X Q, ZHOU X, WANG G X, et al. Evaluating the effect of torrefaction on the pyrolysis of biomass and the biochar catalytic performance on dry reforming of methane[J]. Renewable Energy, 2022, 192:313-325. [16] 张东红,周亮,任夏瑾,等.山楂核/聚乙烯复合材料的力学性能与热性能[J]. 塑料科技, 2020, 48(5):71-76. [17] 简相坤,刘石彩,边轶.活化介质对活性炭微结构及CO2吸附性能的影响[J].功能材料, 2014, 45(1):1095-1098. [18] 王严严,董继先,张斌,等. CO2气氛下谷壳热解炭物化结构演变特性[J]. 陕西科技大学学报, 2019, 37(3):47-52. [19] 田叶顺,任文,王国袖,等. 微波加热 CO2活化法制备生物质活性炭及其脱硫性能研究[J]. 化工学报, 2020, 71(12):5774-5784. [20] PALLARÉS J, GONZÁLEZ-CENCERRADO A, ARAUZO I. Production and characterization of activated carbon from barley straw by physical activation with carbon dioxide and steam[J]. Biomass and Bioenergy, 2018, 115:64-73. [21] 张志霄,杨帆,高雨.N2/CO2气氛下工业危废污泥热解气化的TG-FTIR分析[J]. 杭州电子科技大学学报(自然科学版), 2022, 42(1):82-88. [22] BENÍTEZ-GUERRERO M, LÓPEZ-BECEIRO J, SÁNCHEZ-JIMÉNEZ P E, et al. Comparison of thermal behavior of natural and hot-washed sisal fibers based on their main components:cellulose, xylan, and lignin. TG-FTIR analysis of volatile products[J]. Thermochimica Acta, 2014, 581:70-86. [23] LIU Q, WANG S R, LUO Z Y, et al. Catalysis mechanism study of potassium salts on cellulose pyrolysis by using TGA-FTIR analysis[J]. Journal of Chemical Engineering of Japan, 2008, 41:1133-1142. [24] VOLLI V, GOLLAKOTA A R K, SHU C M. Comparative studies on thermochemical behavior and kinetics of lignocellulosic biomass residues using TG-FTIR and Py-GC/MS[J]. Science of Total Environment, 2021, 792:148392. [25] WANG S R, GUO X J, WANG K G, et al. Influence of the interaction of components on the pyrolysis behavior of biomass[J]. Journal of Analytical and Applied Pyrolysis, 2011, 91(1):183-189. [26] 刘冬冬,高继慧,吴少华,等.热解过程煤焦微观结构变化的XRD和Raman表征[J].哈尔滨工业大学学报, 2016, 48(7):39-45. [27] 卞馨怡,毕二平.不同形态洛美沙星在高岭土上的吸附特性[J]. 地学前缘, 2019, 26(4):279-286. [28] 付浩,李雪冰,汪隽,等. pH 值对活性炭吸附喹诺酮类抗生素影响的研究[J]. 中国给水排水, 2017, 33(17):64-67. [29] 余剑,丁恒,张智霖,等. 改性菱角壳生物炭吸附水中土霉素性能与机理[J]. 中国环境科学, 2021, 41(12):5688-5700.
点击查看大图
计量
- 文章访问数: 87
- HTML全文浏览量: 12
- PDF下载量: 4
- 被引次数: 0