中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石膏-赤泥协同处理资源化利用

路坊海 柴洪云 何海军 魏壮强 舒娅 陈肖虎 龙显泽

路坊海, 柴洪云, 何海军, 魏壮强, 舒娅, 陈肖虎, 龙显泽. 石膏-赤泥协同处理资源化利用[J]. 环境工程, 2024, 42(3): 156-163. doi: 10.13205/j.hjgc.202403019
引用本文: 路坊海, 柴洪云, 何海军, 魏壮强, 舒娅, 陈肖虎, 龙显泽. 石膏-赤泥协同处理资源化利用[J]. 环境工程, 2024, 42(3): 156-163. doi: 10.13205/j.hjgc.202403019
LU Fanghai, CHAI Hongyun, HE Haijun, WEI Zhuangqiang, SHU Ya, CHEN Xiaohu, LONG Xianze. RESOURCE REUTILIZATION FOR PHOSPHOGYPSUM AND RED MUD THOUGH CO-TREATMENT[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(3): 156-163. doi: 10.13205/j.hjgc.202403019
Citation: LU Fanghai, CHAI Hongyun, HE Haijun, WEI Zhuangqiang, SHU Ya, CHEN Xiaohu, LONG Xianze. RESOURCE REUTILIZATION FOR PHOSPHOGYPSUM AND RED MUD THOUGH CO-TREATMENT[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(3): 156-163. doi: 10.13205/j.hjgc.202403019

石膏-赤泥协同处理资源化利用

doi: 10.13205/j.hjgc.202403019
基金项目: 

贵州省科技支撑计划(黔科合支撑[2023]一般243)

贵州理工学院高层次人才科研启动经费项目(XJGC20181010)

贵州省高层次创新型人才培养项目(GZSQCC2018002)

详细信息
    作者简介:

    路坊海(1979-),男,教授,主要研究方向为工业废物资源化利用。lufanghai2006@163.com

    通讯作者:

    路坊海(1979-),男,教授,主要研究方向为工业废物资源化利用。lufanghai2006@163.com

RESOURCE REUTILIZATION FOR PHOSPHOGYPSUM AND RED MUD THOUGH CO-TREATMENT

  • 摘要: 磷石膏和赤泥是典型的2大工业废渣,排放量大、成分复杂、环境风险高,再利用难度较大。基于磷石膏属高钙碱性,赤泥为富铝硅酸性的矿物特点,采用两渣协同处理实现钙质循环再用同步回收铝钠的技术思路。小试试验结果表明:最适宜工艺条件为烧结温度850 ℃,2倍还原剂理论添加量,C/S=2.1,N/A=1.1,烧结时间7 min,该条件下铝和钠的回收率分别为82.14%和83.48%。在此条件下进行了中试试验,结果表明:相较于小试试验,中试试验获得的铝钠回收率略低(Al2O3 76.32%,Na2O 81.25%);其烧结熟料及浸出渣XRD分析表明,与熟料比较,渣中铝酸钠峰值减弱,而钙硅等化合物峰值加强,表明熟料中铝钠溶出效果良好,钙硅等化合物进入渣相;从SEM图可见,熟料微观形貌疏松,表明烧结质量良好;而浸出渣粒度变细、分散,表明熟料浸出性能优异;采用碳酸化分解溶出工序制备的铝酸钠溶液,所得Al(OH)3产品相比氧化铝企业种分工艺生产的Al(OH)3,两者Al2O3含量相当,但前者纯度更低,这可能是源于原料和工艺的差异,且浸出渣碱含量较高(Na2O 3.19%),制约了其大规模利用。试验验证了两渣高温协同处理资源化利用的技术思路可行,但该技术在制备合格Al(OH)3产品及降低渣中碱含量方面仍需进一步优化。
  • [1] KUZMANOVIĆ P, TODOROVIĆ N, FORKAPIĆ S, et al.Radiological characterization of phosphogypsum produced in Serbia[J]. Rradiat phys chem, 2020,166:108463.
    [2] CUI R Z, BAI H D, GAO Y F, et al. Current situation of comprehensive utilization of phosphogypsum and its development trend of 14th Five-Year Plan[J]. Inorganic Chemical Industry, 2022,54(4):1-4.
    [3] 崔荣政,白海丹,高永峰,等.磷石膏综合利用现状及"十四五"发展趋势[J].无机盐工业,2022,54(4):1-4.
    [4] 张杰, 邹洪涛, 宋锡高.黔南州磷石膏综合利用现状及建议[J].磷肥与复肥, 2019,34(1):38-40.
    [5] 王志凯,王贻明,吴爱祥,等.堆存温度对半水磷石膏胶凝性能影响[J].工程科学学报,2022,44(5):840-848.
    [6] JALALI J, GAUDIN P, CAPIAUX H, et al. Fate and transport of metal trace elements from phosphogypsum piles in Tunisia and their impact on soil bacteria and wild plants[J]. Ecotoxicol Environ Saf, 2019,174:12-25.
    [7] 刘林程,左海滨,许志强.工业石膏的资源化利用途径与展望[J].无机盐工业,2021,53(10):1-9.
    [8] YANG X S, ZHANG Z Y, WANG X L, et al. Thermodynamic study of phosphogypsum decomposition by sulfur[J]. J Chem Thermodyn, 2013,57:39-45.
    [9] 马丽萍.磷石膏资源化综合利用现状及思考[J].磷肥与复肥, 2019,34(7):5-9.
    [10] DING W J, CHEN Q J, SUN H J, et al. Modified mineral carbonation of phosphogypsum for CO2 sequestration[J]. J CO2 Util, 2017,34:507-515.
    [11] SAADAOUI E, GHAZEL N, BEN ROMDHANE C, et al. Phosphogypsum:potential uses and problems:a review[J]. Int J Environ Stud,2017, 6:1-10.
    [12] CÁNOVAS C R, CHAPRON S, ARRACHART G. Leaching of rare earth elements (REEs) and impurities from phosphogypsum:a preliminary insight for further recovery of critical raw materials[J]. J Cleaner Prod, 2019,219:225-235.
    [13] 叶学东.2019年我国磷石膏利用现状及形势分析[J].磷肥与复肥,2020,35(7):1-3.
    [14] LI R B, ZHANG T A, LIU Y, et al. Calcification-carbonation method for red mud processing[J]. J Hazard Mater, 2016,316:94-101.
    [15] SHEN X H, YAN F, ZHANG Z, et al. Enhanced and environment-friendly chemical looping gasification of crop straw using red mud as a sinter-resistant oxygen carrier[J].Waste Management, 2021,121:354-364.
    [16] 王亚光,刘晓明.赤泥基光催化材料降解水中有机污染物的应用现状及发展趋势[J].工程科学学报,2021,43(1):22-32.
    [17] QU Y, LI H, TIAN W J, et al. Leaching of valuable metals from red mud via batch and continuous processes by using fungi[J]. Miner Eng,2015, 81:1-4.
    [18] LU F H, XIAO T F, LIN J, et al. Recovery of gallium from Bayer red mud through acidic-leaching-ion-exchange process under normal atmospheric pressure[J]. Hydrometallurgy, 2018,175:124-132.
    [19] SCRIBOT C, MAHERZI W, BENZERZOUR M, et al. A laboratory-scale experimental investigation on the reuse of a modified red mud in ceramic materials production[J]. Construction and Building Materials, 2018,163:21-31.
    [20] LU F H, XIAO T F, LIN J, et al. Resources and extraction of gallium:a review[J]. Hydrometallurgy, 2017,174:105-115.
    [21] DEIHIMI N, IRANNAJAD M, REZAI B. Characterization studies of red mud modification processes as adsorbent for enhancing ferricyanide removal[J]. J Environ Manage, 2017,206:266-275.
    [22] LU F H, XIAO T F, LIN J, et al. Recovery of gallium from Bayer red mud through acidic-leaching-ion-exchange process under normal atmospheric pressure, Hydrometallurgy,2018,175:124-132.
    [23] LU F H, SU X D, HUANG F, et al. Co-treatment of spent pot-lining and red mud for carbon reutilization and recovery of iron, aluminum and sodium by reductive sintering process[J]. Metall Mater Trans B, 2020,51:1564-1575.
    [24] LEHOUX A, LOCKWOO C, MAYES W, et al. Gypsum addition to soils contaminated by red mud:implications for aluminium, arsenic, molybdenum and vanadium solubility[J]. Environmental Geochemistry and Health, 2013, 35:643-656.
    [25] KONG X, LI M, XUE S, et al. Acid transformation of bauxite residue:conversion of its alkaline characteristics, Journal of Hazardous Materials, 2017, 324:382-390.
    [26] XUE S, LI M, JIANG J, et al. Phosphogypsum stabilization of bauxite residue:conversion of its alkaline characteristics[J]. Journal of Environmental Sciences, 2019, 77:4-13.
    [27] HE H W, HAO L F, FAN C G, et al. A two-step approach to phosphogypsum decomposition:oxidation of CaS with CO2[J]. Thermochim. Acta, 2022, 708:179122.
    [28] MA L, NING P, ZHENG S. Reaction mechanism and kinetic analysis of the decomposition of phosphogypsum via a solid-state reaction[J]. Industrial & Engineering Chemistry Research, 2010(8),49:3597-3602.
    [29] 毕诗文.氧化铝生产工艺[M]. 北京:化学工业出版社, 2006.
    [30] LI X B, XIAO W, LIU W, et al. Recovery of alumina and ferric oxide from Bayer red mud rich in iron by reduction sintering[J].Trans Nonferrous Met Soc China, 2009, 19(5):1342-1347.
  • 加载中
计量
  • 文章访问数:  102
  • HTML全文浏览量:  13
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-18
  • 网络出版日期:  2024-05-31

目录

    /

    返回文章
    返回