THEORETICAL RESEARCH AND APPLICATION OF CARBONATION AND MICROBIAL MINERALIZATION OF STEEL SLAG
-
摘要: 我国是CO2排放大国,水泥、钢铁、化工等高碳排放行业节能降碳势在必行。钢渣碳酸化是利用冶金固废转炉渣吸收捕集温室气体CO2的低碳技术,既可实现CO2捕集消纳,还可通过碳酸化反应实现钢渣的安定化处理,提升钢渣建材制品性能。因此,钢渣碳酸化技术应用前景较为广阔。基于此,详细介绍了国内外钢渣碳酸化技术研究、发展及存在问题,进一步分析了前沿的微生物碳酸化钢渣技术及其应用情况。提出应加强开发低投入、高成效的碳酸化效率提升技术,如钢渣微生物碳酸化技术,在保证碳酸化钢渣凝胶特性的同时,同步提升钢渣碳酸化效率和速率,以具有实现钢渣资源化利用和碳减排的重大意义。Abstract: China is a major emitter of carbon dioxide, therefore, energy conservation and carbon reduction in high carbon emitting industries such as cement, steel, and chemicals are imperative. Steel slag carbonation is a low-carbon technology that utilizes metallurgical solid waste converter slag to absorb and capture greenhouse gas carbon dioxide. It can not only achieve carbon dioxide capture and consumption, but also stabilize steel slag through carbonation reaction, improving the performance of steel slag building materials. Therefore, the application prospects of steel slag carbonation technology are relatively broad. Based on this, a detailed introduction was given to the research, development, and existing problems of steel slag carbonation technology at home and abroad. Further analysis was conducted on the cutting-edge microbial carbonation technology for steel slag and its application. It is proposed to strengthen the development of low input and high effect carbonation efficiency improvement technology, such as steel slag microbial carbonation technology, to simultaneously improve the efficiency and rate of steel slag carbonation while ensuring the gel characteristics of carbonated steel slag, which will help to realize the resource utilization of steel slag and carbon reduction.
-
Key words:
- steel slag /
- carbonation /
- microorganisms /
- application
-
[1] 姚雁彬. "碳中和"愿景下我国城市生活垃圾低碳管理研究:时空演化、驱动因素、减排路径[D]. 扬州:扬州大学,2022. [2] 郭晓玉. 基于绿色技术创新视角下的煤炭企业价值评估研究[D].呼和浩特:内蒙古财经大学,2022. [3] 吴跃东,彭犇,吴龙, 等.国内外钢渣处理与资源化利用技术发展现状综述[J].环境工程,2021,39(1):161-165. [4] 任旭,王会刚,吴跃东, 等."双碳"目标下钢渣处理及资源化利用探讨[J].环境工程,2022,40(8):220-224. [5] 裴建德. 利用冶金渣制备硅钙基多元体系陶瓷的机理及应用研究[D]. 北京:北京科技大学, 2019. [6] 王丹. 钢渣碳酸化过程中碳酸钙生长与性能关系[D].大连:大连理工大学,2020. [7] MASLEHUDDIN M, SHARIF A M, SHAMEEM M. Comparison of properties of steel slag and crushed limestone aggregate concretes[J]. Construction and Building Materials, 2003, 17(2):105-112. [8] WANG Q, YAN P Y. Hydration properties of basic oxygen furnace steel slag[J]. Construction and Building Materials, 2010, 24(7):1134-1140. [9] 李刚林. 碳化钢渣制备墙地建材制品[D]. 济南:济南大学, 2015. [10] SEIFRITZ W. CO2 disposal by means of silicates[J]. 1990, 345:486. [11] HUIJGEN W J J. Carbon dioxide sequestration by mineral carbonation[J]. Wur Wageningen Ur, 2007, 3(8):13. [12] HUIJGEN W, WITKAMP G J, COMANS R. Mineral CO2 sequestration in alkaline soldi residues[C]//International Conference on Greenhouse Gas Control Technologies, 2004. [13] BACIOCCHI R, COSTA G, POLETTINI A, et al. Accelerated carbonation of steel slags using CO2 diluted sources:CO2 uptakes and energy requirements[J]. Frontiers in Energy Research, 2016, 3:56. [14] STOLAROFF J K, LOWRY G V, KEITH D W. Using CaO- and MgO-rich industrial waste streams for carbon sequestration[J]. Energy Conversion & Management, 2005, 46(5):687-699. [15] 彭犇,岳昌盛,李玉祥, 等.不同条件对钢渣碳酸化反应的影响及动力学分析[J].硅酸盐通报,2020,39(11):3562-3566. [16] 房延凤. 钢渣中碱性矿物碳酸化及产物衍变规律研究[D]. 大连:大连理工大学, 2017. [17] 姚恒山,陈思佳,陈德伟, 等.加速碳酸化条件下钢渣块体体积安定性的研究[J].硅酸盐通报,2020,39(1):187-193. [18] 顾杨杨. 碳酸化钢渣制品的耐久性研究[D]. 大连:大连理工大学,2020. [19] 姚恒山. 非水硬性硅酸钙碳酸化反应过程研究[D]. 镇江:江苏大学,2020. [20] BACIOCCHI R, COSTA G, DI GIANFILIPPO M, et al. Thin-film versus slurry-phase carbonation of steel slag:CO2 uptake and effects on mineralogy[J]. Journal of Hazardous Materials, 2015, 283:302-313. [21] 涂茂霞, 雷泽, 吕晓芳, 等. 水淬钢渣碳酸化固定CO2[J]. 环境工程学报, 2015, 9(9):4514-4518. [22] MO L W, ZHANG F, DENG M. Mechanical performance and microstructure of the calcium carbonate binders produced by carbonating steel slag paste under CO2 curing[J]. Cement and Concrete Research, 2016, 88:217-226. [23] 王日伟, 周宏仓, 何都良, 等. 低浓度碱强化钢渣固定CO2[J]. 科学技术与工程, 2017,17(27):338-342. [24] LIANG X, YE Z, CHANG J. Early hydration activity of composite with carbonated steel slag[J]. Journal of the Chinese Ceramic Society, 2012, 6:18-26. [25] 储健. 转炉钢渣碳化砖的试验研究初探[J]. 粉煤灰, 1998(2):26-28. [26] 侯贵华, 卢豹, 郜效娇, 等. 新型低钙水泥的制备及其碳化硬化过程[J]. 硅酸盐学报, 2015,44(2):112-117. [27] 刘雨. 微生物固碳钢渣建材制品矿化胶凝机制与调控技术基础研究[D]. 南京:东南大学, 2018. [28] 钱春香, 张霄, 伊海赫. 微生物提升钢渣胶凝材料安定性和强度的作用及机理[J]. 硅酸盐通报, 2020, 39(8):2363-2371. [29] 荣辉, 韩兆攀, 唐天佼, 等. 不同介质对微生物矿化钢渣安定性影响效果研究[J]. 新型建筑材料, 2023, 50(1):113-118. [30] 孙翠平. 铁盐、钢渣辅助深海微生物除磷效能与机理[D]. 济南:山东大学, 2015. [31] 闫萌萌, 黄永炳, 牛晨雨, 等. 微生物改性钢渣去除废水中砷(Ⅲ)的性能研究[J]. 武汉理工大学学报, 2017, 39(4):69-74,88. [32] ZHANG J K, SU P D, LI Y D, et al.Environmental investigation of biomodification of steel slag through microbially induced carbon-ate precipitation[J]. Journal of Environmental Sciences, 2021, 101:282-292. [33] WANG K, QIAN C X, WANG R X. The properties and mechanism of microbial mineralized steel slag bricks[J]. Construction and Building Materials, 2016, 113:815-823. [34] 伊海赫. 微生物提升钢渣胶凝材料安定性和利用率的作用及机理[D]. 南京:东南大学, 2020. [35] 张永胜, 苏依林, 詹其伟. 微生物矿化废渣制备建材制品[J].江西建材,2019(4):23-24.
点击查看大图
计量
- 文章访问数: 91
- HTML全文浏览量: 12
- PDF下载量: 4
- 被引次数: 0