DESORPTION OF SOIL BENZENE SERIES CONTAMINANTS USING ELECTROMAGNETIC FIELD SIMULATED MICROWAVES
-
摘要: 微波热脱附土壤中的有机污染物凭借高效、清洁等优点受到广泛关注。近年来,多数微波土壤热脱附研究装置均由家用微波炉改造而来,无法满足微波热脱附实际应用所需的高功率、高精度温度控制等条件。因此,选用苯系物中的邻二甲苯作为目标污染物,以自配污染土壤为样品,采用自制微波热脱附装置为平台进行实验,针对微波功率、微波加热时长、土壤含水率等工艺条件进行单因素影响实验。同时,构建微波加热土壤模型,设置相同条件,并得到相符的结果。并利用该模型推测其他单因素影响实验的假设。实验与模拟结果表明:微波对土壤热脱附的最佳功率为1600 W,热脱附时间为27 min,含水率为17%,推测样品放置于临近加热腔中心位置时对邻二甲苯去除率最佳。Abstract: Microwave thermal desorption of organic contaminants from soil has gained much attention due to its high efficiency and cleanliness. In recent years, most of the microwave soil thermal desorption research devices are converted from household microwave ovens, and cannot meet the high power requirement for the practical application of microwave thermal desorption, high-precision temperature control, and other conditions. Therefore, in this paper, o-xylene in benzene was chosen as the target pollutant, the self-matched contaminated soil was used as the sample, a self-made microwave thermal desorption device was used as the platform for the experiments, and single-factor influence experiments were conducted for the process conditions such as microwave power, microwave heating duration, and soil moisture content, etc. Meanwhile, a microwave heating soil model was constructed, the same conditions were set, and the matching results were obtained. The model was also used to speculate the hypothesis of other single-factor influence experiments. The experimental and simulation results showed that the optimal power of microwave thermal desorption of soil was 1600 W, the thermal desorption time was 27 min, the water content was 17%, and it was presumed that the best removal rate of o-xylene was achieved when the sample was placed near the center of the heating chamber.
-
Key words:
- soil remediation /
- microwave thermal desorption /
- electromagnetic simulation /
- o-xylene
-
[1] 陈能场, 郑煜基, 何晓峰, 等. 《全国土壤污染状况调查公报》探析[J]. 农业环境科学学报, 2017, 36(9):1689-1692. [2] 王世晗. 有机污染土壤微波处理实验研究与设备设计[D]. 北京:北京化工大学, 2019. [3] ABBAS S Z, RAFATULLAH M, CHEN M Y, et al. Recent advances in soil microbial fuel cells for soil contaminants remediation[J]. Chemosphere, 2021, 272:129691-129702. [4] WANG H M, XING L Q, ZHANG H H, et al. Key factors to enhance soil remediation by bioelectro chemical systems (BESs):a review[J]. Chemical Engineering Journal, 2021, 419:129600-129610. [5] SELVAKUMAR R, RAMADOSS G, MENON M P, et al. Challenges and complexities in remediation of uranium contaminated soils:a review[J]. Journal of Environmental Radioactivity, 2018, 192:592-603. [6] 车凯, 韩忠阁, 郁金星, 等.绝缘油污染土壤微波脱附试验[J]. 环境工程, 2022, 40(2):127-131,138. [7] 胡岚, 沈燕飞. 有机毒物污染土壤的淋洗化学修复技术研究[J]. 环境科技, 2013, 26(4):28-32. [8] 陈红云, 卿晋武, 蔡晓鲜, 等. 微生物耦合化学技术修复石油烃土壤污染研究进展[J]. 应用与环境生物学报, 2023, 29(2):484-494. [9] 谢承昊, 高立华, 湛文龙, 等. 微波场下粉煤灰/电石渣负载Na2O协同脱硫脱硝[J]. 环境工程, 2022, 40(2):81-87. [10] JACOB J, CHIA L H F, BOEY F Y. Thermal and non-thermal interaction of microwave radiation with materials[J]. Journal of Materials Science, 1995, 30(21):5321-5327. [11] 唐龙飞. 煤炭微波脱硫中有机硫形态迁移规律及微波非热效应研究[D]. 徐州:中国矿业大学, 2020. [12] FALCIGLIA P P, MALARBI D, MADDALENA R, et al. Remediation of Hg-contaminated marine sediments by simultaneous application of enhancing agents and microwave heating (MWH)[J]. Chemical Engineering Journal, 2017, 321:1-10. [13] FALCIGLIA P P, MANCUSO G, SCANDURA P, et al. Effective decontamination of low dielectric hydrocarbon-polluted soils using microwave heating:experimental investigation and modelling for in situ treatment[J]. Separation and Purification Technology, 2015, 156:480-488. [14] KOSTAS E T, BENEROSO D, ROBINSONR J P. The application of microwave heating in bioenergy:a review on the microwave pre-treatment and upgrading technologies for biomass[J]. Renewable and Sustainable Energy Reviews, 2017, 77:12-27. [15] LUO H, WANG H, KONG L Z, et al. Insights into oil recovery, soil rehabilitation and low temperature behaviors of microwave-assisted petroleum-contaminated soil remediation[J]. Journal of Hazardous Materials, 2019, 377:341-348. [16] 王星. 微波修复挥发性有机物污染土壤技术应用及机理研究[D]. 石家庄:河北科技大学, 2019. [17] 谷兴家. 矿物油污染土壤微波热脱附实验研究[D]. 保定:华北电力大学, 2021. [18] SUN S, SU Y H, CHEN S Q, et al. Bioremediation of oil-contaminated soil:exploring the potential of endogenous hydrocarbon degrader Eterobacter Sp. SAVR S-1[J]. Applied Soil Ecology, 2022, 173:104387. [19] ZHAO D, LIAO X Y, YAN X L, et al. Effect and mechanism of persulfate activated by different methods for PAHs removal in soil[J]. Journal of Hazardous Materials, 2013, (254/255):228-235. [20] PETR K, FRANTISEK K, MILAN H. Microwave-enhanced thermal desorption of polyhalogenated biphenyls from contaminated soil[J]. Journal of Environmental Engineering, 2010, 136(3):295-300. [21] 唐金华. 多环芳烃污染土壤的微波修复技术研究[D]. 江苏:南京农业大学, 2014. [22] JUNIOR I P, MARTINS A L, ATAIDE C H, et al. Microwave drying remediation of petroleum-contaminated drill cuttings[J]. Journal of Environmental Management, 2017, 196:659-665. [23] 龙飞. 石油污染土壤的微波修复技术研究[D]. 石家庄:河北科技大学, 2020. [24] 周翠红, 王世晗, 黄艺礼. 微波辅助硝基苯污染土壤修复模拟及工艺参数优化[J]. 环境科技, 2019, 32(2):6-11. [25] YUAN S H, TIAN M, LU X H. Microwave remediation of soil contaminated with hexachlorobenzene[J]. Journal of Hazardous Materials, 2006, 137(2):878-885. [26] 王棣. 微波辅助催化氧化协同臭氧处理苯系物的研究[D]. 上海:上海第二工业大学, 2020. [27] 张麟君, 李凯荣, 张晓阳. 陕北黄土高原不同植物对石油污染物的吸收与积累[J]. 西北农林科技大学学报(自然科学版), 2013, 41(8):110-116. [28] 王祺. 基于COMSOL的陶瓷结合剂磨具微波烧结仿真研究[D]. 沈阳:沈阳航空航天大学, 2019. [29] 何帔雨. 高压直流输电接地极监测参数计算、检测及预警模型研究[D]. 昆明:云南大学, 2020. [30] 周明长, 李少甫. 基于数值仿真的多馈微波加热温度控制系统[J]. 微波学报, 2019, 35(5):92-96. [31] 周明长. 多馈口微波加热数值仿真及温度控制研究[D]. 绵阳:西南科技大学, 2020. [32] TAMANG S, ARAVINDAN S, Joining of dissimilar metals by microwave hybrid heating:3D numerical simulation and experiment[J]. International Journal of Thermal Sciences, 2022, 172:107281. [33] FENG S Y, LIU J D, GAO B, et al. The filtration and degradation mechanism of toluene via microwave thermo-catalysis ceramic membrane[J]. Journal of Environmental Chemical Engineering, 2021, 9(2):105105. [34] 陈维墉, 胡林潮, 朱雷鸣, 等. 石油烃污染土壤活性碳增强微波热修复及菌剂深度降解试验研究[J]. 土木与环境工程学报, 2021, 43(4):195-201. [35] 付毕安. 微波场中典型电/磁损耗含湿矿物类多孔介质内部耦合传输机制研究[D]. 北京:北京交通大学, 2019. [36] 高勇. 典型材料高功率下微波介电特性研究[D]. 西安:西安电子科技大学, 2019. [37] 刘松涛, 谷兴家, 贾文波, 等. 绝缘油污染土壤微波热脱附的影响因素[J]. 环境工程学报, 2021, 15(12):3974-3981. [38] FALCIGLIA P P, GIUSEPPE U, FEDERICO G. A. Microwave heating remediation of soils contaminated with diesel fuel[J]. Journal of Soil & Sediments, 2013, 13(8):1396-1407. [39] 李宁, 刘秉国, 张利波, 等. 废旧三元锂离子电池正极材料的微波吸收特性[J]. 工程科学学报, 2022,44(7):1222-1230. [40] 杨康. 红外辅助微波热处理苯类污染土壤实验研究与装备设计[D]. 北京:北京石油化工学院, 2021.
点击查看大图
计量
- 文章访问数: 64
- HTML全文浏览量: 4
- PDF下载量: 4
- 被引次数: 0