SCREENING AND IDENTIFICATION OF SURFACTANT-PRODUCING PETROLEUM-DEGRADING BACTERIA AND THEIR REMEDIATION EFFICACY
-
摘要: 以炼油厂周边土壤中筛选出的产表面活性剂石油降解菌为研究对象,探究其产生表面活性剂的发酵条件及对土壤的修复效果。根据血平板、排油圈实验选定1株优势产表面活性剂菌株,编号为M-8,经生理生化试验和16S rDNA序列分析鉴定其为蜡样芽孢杆菌(Bacillus cereus);通过TLC、红外光谱分析测定菌株M-8产生脂肽类表面活性剂;为使菌株产生更多的表面活性剂,采用Plackett-Burman和Box-Behnken实验对发酵条件进行优化。结果表明:在pH为8.15,蔗糖为21.8 g/L,磷源为12.33 g/L,发酵培养3 d条件下,菌株表面活性剂的产量可达到(1.305±0.05) g/L。在实验室模拟条件下,以石油降解率、脱氢酶活性及土壤呼吸强度为指标,测定处理48 d后对石油污染土壤的修复效果。结果表明:处理48 d后,添加菌株组石油去除率达到91.23%,且添加菌株的土壤脱氢酶活性及呼吸强度远高于未添加菌株的土壤。Abstract: The surfactant-producing petroleum degrading bacteria screened from the soil around the refinery were used to investigate the fermentation conditions of surfactant production and the remediation effect on the soil. A dominant surfactant-producing strain, numbered M-8, was selected based on blood plate and oil drainage circle experiments, and identified as Bacillus cereus by physiological and biochemical tests and 16S rDNA sequence analysis; the production of lipopeptide surfactant by strain M-8 was determined by TLC and infrared spectroscopy. To make the strain produce more surfactant, the Plackett-Burman and Box-Behnken experiments were used to optimize the fermentation conditions for more surfactant production. The experimental results showed that the surfactant production of the strain could reach (1.305±0.05) g/L at a pH value of 8.15, 21.8 g/L of sucrose, 12.33 g/L of phosphorus source, and 3 days of fermentation incubation. The remediation effect on petroleum-contaminated soil after 48 d of treatment was measured under simulated laboratory conditions, using petroleum degradation rate, dehydrogenase activity, and soil respiration intensity as the indicators. The results showed that the oil removal rate of the added strain group reached 91.23% after 48 days of treatment, and the soil dehydrogenase activity and respiration intensity of the added strain were much higher than those of the soil without added strain.
-
Key words:
- Bacillus cereus /
- biosurfactant /
- response surface optimization /
- microbial remediation
-
[1] ADNAN B A, MAYTHAM A D, LI S, et al. Principles of microbial degradation of petroleum hydrocarbons in the environment[J]. The Egyptian Journal of Aquatic Research, 2018, 44(2):71-76. [2] FRANCISCO A S MOTA, FILHO,J T COSTA BARRETO G A. The Nile tilapia viscera oil extraction for biodiesel production in Brazil:An economic analysis[J]. Renewable and Sustainable Energy Reviews, 2019, 108:1-10. [3] 张譞.石油污染土壤的修复技术[J].山西化工, 2023, 43(3):226-227,232. [4] 杨乐.产表面活性剂解烃菌的筛选及其降解条件研究[J].环境工程,2015,33(6):153-157. [5] 李云龙. 表面活性剂调节土壤中石油增溶/解吸作用的试验研究[D]. 阜新:辽宁工程技术大学, 2021. [6] 孔萌, 邢献杰, 姜巧, 等.产表面活性剂石油降解菌的筛选及其对石油烃的降解特性[J].土木与环境工程学报(中英文), 2022, 44(4):149-156. [7] MONISHA B, VIJAYALAKSHMI K P, SANTHOSH K. Sankaranarayanan, et al. Bioinspired surface activators for wet/dry environments through greener epoxy-catechol amine chemistry[J]. Applied Surface Science, 2020, 505(C):144414. [8] FARHAN A, GUNJAN G, GNANSOUNOU E, et al. Biosurfactant production through Bacillus sp. MTCC 5877 and its multifarious applications in food industry[J]. Bioresource Technology, 2016, 213:262-269. [9] IBRAHIM E A Y, SALAH E D M W. Isolation and characterization of biosurfactant producing bacteria from oil-contaminated water[J]. Biosciences, Biotechnology Research Asia, 2019, 16(4). [10] HE L R. Advances in microbial remediation of organic contaminated soil[J]. IOP Conference Series:Earth and Environmental Science, 2020, 514(5). [11] MEHDI A, FORUD N, NEEMATOLLAH J et al. Characterization of the biosurfactant produced by Pesudomonas areuginosa strain R4 and its application for remediation pyrene-contaminated soils[J]. Journal of Environmental Health Science and Engineering, 2021, 19(1):445-456. [12] 曾超, 周菁菁, 臧润民, 等. Bacillus siamensis ZCST-1菌发酵产物的排油能力及其特性[J].大连工业大学学报, 2020, 39(6):396-400. [13] 邓振山, 马琳,张袭, 等.一株产表面活性剂石油降解菌筛选及其特性[J].环境工程学报, 2017, 11(5):3295-3303. [14] 东秀珠, 蔡妙英. 常见细菌系统鉴定手册[M]. 北京:科学出版社, 2001:180. [15] 阎洁, 余雪巍, 李鉴博, 等. 一株菲降解细菌产生生物表面活性剂特性的研究[J].生态环境学报, 2021, 30(8):1683-1694. [16] 雷富强. 废弃钻井泥浆降解菌的筛选与处理效果研究[D]. 西安:西安石油大学, 2021. [17] BEULAH B F P. Screening and extraction of biosurfactant producing bacteria from oil contaminated soils[J]. International Journal of Advanced Research, 2018, 6(2). [18] 黄小敏. 土著生物表面活性剂产生菌Acinetobacter sp.Y2对压裂返排液的强化修复研究[D].桂林:桂林理工大学, 2020. [19] 刘文磊, 杨明明, 张燕,等. 菌株P.aeruginosa BC1的筛选、鉴定及其产生物表面活性剂的性能[J].油田化学, 2016, 33(4):720-725. [20] 吴亮, 王新新, 吴岢芯,等. 一株产生生物表面活性剂的海洋细菌培养条件优化与产物特性研究[J].海洋环境科学, 2022, 41(6):897-903. [21] 刁硕,王红旗,吴枭雄,等.基于响应面法优化一株低温耐盐芘降解菌共代谢条件的研究[J].中国环境科学, 2017, 37(1):345-351. [22] 吴蔓莉, 李可欣, 侯爽爽, 等. 贫养分低有机质黄绵土中石油烃的生物去除特性及菌群结构变化[J]. 环境科学研究, 2021, 34(8):1961-1970. [23] 郑彬. 苯并[a]芘和菲累积污染对土壤呼吸强度与酶活性的影响[D]. 合肥:安徽农业大学, 2014. [24] 张奕婷, 徐晶雪, 于波, 等. 一株产表面活性剂菌株的筛选、鉴定及培养基的响应面优化[J].大庆石油地质与开发, 2021, 40(1):103-109.
点击查看大图
计量
- 文章访问数: 83
- HTML全文浏览量: 14
- PDF下载量: 4
- 被引次数: 0