A BIBLIOMETRIC STUDY OF ANTIMONY ECOLOGICAL ENVIRONMENTAL RISK AND WATER QUALITY BENCHMARKING TREND
-
摘要: 基于文献计量学方法,对锑生态环境风险和水质基准相关研究领域的发展趋势进行探讨。通过检索Web of Science数据库中2000—2022年的相关文献,分析文献数量、作者、机构、期刊、关键词等指标,并采用共现分析、聚类分析和关键词演化分析来揭示研究热点和前沿。结果表明:锑生态环境风险和水质基准研究领域文献数量自2000年以来呈逐年增多的趋势,中国和美国的科学家贡献最多。其研究点主要集中在锑污染的来源、传输、转化、生态效应等方面。聚类分析结果显示,锑在环境中的分布特征和健康风险是当前研究的热门方向,而锑在土壤、水体和大气中的分布与迁移成为研究的重要问题。关键词演化分析发现,锑污染物的检测与监测、锑对生态系统的影响、锑的生物富集与转移、锑的迁移转化与去除技术等逐渐成为未来研究的重点。研究结果有助于了解锑生态环境风险和水质基准研究领域的发展动态和趋势,为锑的科学利用与管理研究提供参考和借鉴。Abstract: Based on the bibliometric method, this study explored the trend in research related to antimony (Sb) ecological and environmental risks and water quality standards. Relevant literature from 2000 to 2022 was retrieved from the Web of Science database, and indicators such as the number of documents, authors, institutions, journals, and keywords were analyzed. Co-occurrence analysis, cluster analysis, and keyword evolution analysis were used to reveal research hotspots and frontiers. The results indicate an increasing trend in the number of publications on antimony ecological and environmental risks and water quality standards since 2000, and scientists from China and the United States contribute the most. Its research focuses mainly on the sources, transmission, transformation, and ecological effects of antimony pollution. Cluster analysis results show that the distribution characteristics of antimony in the environment and health risks are current research hotspots, while the distribution and migration of antimony in soil, water, and atmosphere have become important research problems. Keyword evolution analysis reveals that future research will focus on the detection and monitoring of antimony pollutants, the impact of antimony on the ecosystem, the biological accumulation and transferring of Sb, and the migration, transformation, and removal technologies of antimony. The research results contribute to understanding the development trend in the field of antimony ecological environmental risk and water quality benchmark, and provide reference for the scientific utilization and management of antimony.
-
Key words:
- antimony criterion /
- risk assessment /
- bibliometrics /
- VOSviewer
-
[1] 戈兆凤, 韦朝阳. 锑环境健康效应的研究进展[J]. 环境与健康杂志, 2011, 28(7):649-653. [2] 何孟常, 万红艳. 环境中锑的分布、存在形态及毒性和生物有效性[J]. 化学进展, 2004,16(1):131-135. [3] 朱静, 郭建阳, 王立英,等. 锑的环境地球化学研究进展概述[J]. 地球与环境,2010, 38(1):109-116. [4] 殷志遥, 和君强, 刘代欢,等. 我国土壤锑污染特征研究进展及其富集植物的应用前景初探[J]. 农业资源与环境学报, 2018, 35(3):199-207. [5] 黄艳超, 武雪芳, 周羽化,等. 水环境中锑污染及其修复技术研究进展[J]. 南京师大学报(自然科学版), 2015, 38(4):122-128. [6] 孙若楠, 颜雄, 李文昭,等. 基于CNKI数据库的土壤重金属评价文献计量分析[J]. 农业科技与信息, 2020(24):59-61. [7] 张媛, 张艳杰, 朱静,等. 基于文献计量的湿地构建前沿进展[J]. 环境工程技术学报, 2021, 11(1):107-113. [8] 蔡深文, 高智席, 颜雄,等. 基于Web of Science的河流重金属污染文献计量分析[J]. 长江科学院院报, 2018, 35(10):53-57,63. [9] 张静辉, 罗亚勇, 常宗强. 基于文献计量的生态系统碳交换研究发展态势分析[J]. 生态环境学报, 2015, 24(12):2082-2088. [10] 苏新宁. 文献计量学与科学评价中有关问题思考[J]. 图书与情报, 2013(1):79-83. [11] 李一平, 刘细文. 科学共同体文献计量学特征研究[J]. 图书情报工作, 2014, 58(9):62-68. [12] HALL C M. Publish and perish? Bibliometric analysis, journal ranking and the assessment of research quality in tourism[J]. Tourism Management, 2011, 32(1):16-27. [13] 孙阳,李佳怡.基于Web of Science生态补偿的研究态势分析[C]//中国环境科学学会2021年科学技术年会-环境工程技术创新与应用分会场论文集,工业建筑杂志社有限公司,2021. [14] 刘腾腾, 吴超玉, 薛琳,等. 生物炭调控土壤微生物的文献计量分析[J]. 林业与生态科学, 2023, 38(1):88-97. [15] 郭宏, 朱延宇, 李皓芯,等. 基于文献计量学的水体修复技术的研究现状及过程解析[J]. 环境保护与循环经济, 2018, 38(12):40-45. [16] GUO F, WU F C, YU F, et al. Fate and removal of antimony in response to stringent control activities after a mine tailing spill[J]. Science of the Total Environment, 2019, 693:133604. [17] 郭全瑞, 唐彬. 美国霍尼韦尔公司五氯化锑泄漏事故[J]. 现代职业安全, 2018(10):98-102. [18] 吴永红, 靳少非. 基于CiteSpace的重金属污染土壤修复研究文献计量分析[J]. 农业环境科学学报, 2020, 39(3):454-461. [19] 张亚平, 张婷, 陈锦芳,等. 水、土环境中锑污染与控制研究进展[J]. 生态环境学报, 2011, 20(增刊2):1373-1378. [20] 肖涵, 韩志伟, 熊佳,等. 贵州晴隆锑矿尾砂中锑和砷的生物有效性及生态风险评价[J]. 环境工程, 2022, 40(5):123-132. [21] SCHILDROTH S, OSBORNE G, SMITH A R, et al. Occupational exposure to antimony trioxide:a risk assessment[J]. Occupational and Environmental Medicine, 2021, 78(6):413-418. [22] MAJESTIC B J, TURNER J A, MARCOTTE A R. Respirable antimony and other trace-elements inside and outside an elementary school in Flagstaff, AZ, USA[J]. Science of the Total Environment, 2012, 435:253-261. [23] 卞向阳, 言婷, 黄翠. 基于VOSviewer的明代服饰研究可视化分析[J]. 丝绸, 2022, 59(11):54-63. [24] ZHUANG W, LAI X Y, WANG Q, et al. Distribution characteristics, sources and ecological risk of antimony in the surface sediments of Changjiang Estuary and the adjacent sea, East China[J]. Marine Pollution Bulletin, 2018, 137(DEC.):474-480. [25] HU Y M, ZHOU J, LIU H L, et al. Bibliometric analysis of studies on remediation of heavy metals contaminated soils based on web of science[J]. Soil Journal, 2018,55(3):707-720. [26] JIANG J L, WU Y J, SUN G Y, et al. Characteristics, accumulation, and potential health risks of antimony in atmospheric particulate matter[J]. Acs Omega, 2021, 6(14):9460-9470. [27] WU F C, FU Z Y, LIU B J, et al. Health risk associated with dietary co-exposure to high levels of antimony and arsenic in the world's largest antimony mine area[J]. Science of the Total Environment, 2011, 409(18):3344-3351. [28] WANG X N, CUI L, LI J, et al. Water quality criteria for the protection of human health of 15 toxic metals and their human risk in surface water, China[J]. Environmental Pollution, 2021, 276(16):116628. [29] CUI L, WANG X N, LI J, et al. Ecological and health risk assessments and water quality criteria of heavy metals in the Haihe River[J]. Environmental Pollution, 2021,290:117971. [30] TAO Y R, SU H L, LI H X, et al. Ecological and human health risk assessment of antimony (Sb) in surface and drinking water in China[J]. Journal of Cleaner Production, 2021, 318:128514. [31] KESHAVARZI B, TAZARVI Z, RAJABZADEH M A, et al. Chemical speciation, human health risk assessment and pollution level of selected heavy metals in urban street dust of Shiraz, Iran[J]. Atmospheric Environment, 2015, 119:1-10. [32] DEHGHANI S, MOORE F, KESHAVARZI B, et al. Health risk implications of potentially toxic metals in street dust and surface soil of Tehran, Iran[J]. Ecotoxicology and Environmental Safety, 2017, 136:92-103. [33] 郭文景,张志勇,符志友,等. 锑的淡水水质基准及其对我国水质标准的启示[J].中国环境科学,2020,40(4):1628-1636. [34] 刘连华, 欧阳威, 何孟常,等. 基于文献计量的锑对农作物影响研究趋势[J]. 中国环境科学, 2022, 42(10):4798-4806. [35] 熊佳, 韩志伟, 吴攀,等. 独山锑冶炼厂周边土壤锑砷空间分布特征、污染评价及健康风险评估[J]. 环境科学学报, 2020, 40(2):655-664. [36] HUANG M J, CHEN X W, SHAO D D, et al. Risk assessment of arsenic and other metals via atmospheric particles, and effects of atmospheric exposure and other demographic factors on their accumulations in human scalp hair in urban area of Guangzhou, China[J]. Ecotoxicology and Environmental Safety, 2014, 102:84-92. [37] HAKANSON L. An ecological risk index for aquatic pollution control.a sedimentological approach[J]. Water Research, 1980,14(8):975-1001. [38] HAN Y M, DU P X, CAO J J, et al. Multivariate analysis of heavy metal contamination in urban dusts of Xi'an, Central China[J]. The Science of the total environment, 2006, 355(1/2/3):176-186. [39] 邱均平, 杨瑞仙. 基于ESI数据库的材料科学领域文献计量分析研究[J]. 情报科学, 2010, 28(8):1121-1126. [40] ZHANG Y Q, ZHANG M, YU W X, et al. Ecotoxicological risk ranking of 19 metals in the lower Yangtze River of China based on their threats to aquatic wildlife[J]. Science of the Total Environment, 2022, 812:152370. [41] WANG N N, WANG A H, KONG L H, et al. Calculation and application of Sb toxicity coefficient for potential ecological risk assessment[J]. Science of the Total Environment, 2018, 610:167-174. [42] SALMANIGHABESHI S, PALOMO-MARIN M R, BERNALTE E, et al. Long-term assessment of ecological risk from deposition of elemental pollutants in the vicinity of the industrial area of Puchuncavi-Ventanas, central Chile[J]. Science of the Total Environment, 2015, 527:335-343. [43] WU F C, FU Z Y, LIU B J, et al. Health risk associated with dietary co-exposure to high levels of antimony and arsenic in the world's largest antimony mine area[J]. Science of the Total Environment, 2011, 409(18):3344-3351. [44] RAMIREZ O, de LA CAMPA A M S, SANCHEZ-RODAS D, et al. Hazardous trace elements in thoracic fraction of airborne particulate matter:assessment of temporal variations, sources, and health risks in a megacity[J]. Science of the Total Environment, 2020, 710:136344. [45] LI Z Y, MA Z W, van DER KUIJP T J, et al. A review of soil heavy metal pollution from mines in China:pollution and health risk assessment[J]. Science of the Total Environment, 2014, 468:843-853. [46] 许振亮, 郭晓川. 国际技术创新研究前沿领域的知识图谱分析:作者共被引网络与聚类分析视角[J]. 科学学研究, 2011, 29(11):1625-1637. [47] HÅKANSON L, PETERS R H. Predictive Limnology:Methods for Predictive Modelling[M]. Amsterdam:SPB Academic Publishing, 1995. [48] 李娜, 王珍珍. 沉积物重金属污染生态风险评价方法浅析[J]. 内蒙古石油化工, 2012(23):11-12. [49] 李文兰, 杨祖国. 中国情报学期刊论文关键词词频分析[J]. 情报科学, 2005(1):68-70,143. [50] SAERENS A, GHOSH M, VERDONCK J, et al. Risk of cancer for workers exposed to antimony compounds:a systematic review[J]. International Journal of Environmental Research and Public Health, 2019, 16(22):4474. [51] CUI H S, WEN J, YANG L S, et al. Spatial distribution of heavy metals in rice grains and human health risk assessment in Hunan Province, China[J]. Environmental Science and Pollution Research, 2022, 29(55):83126-83137. [52] FEI J C, MIN X B, WANG Z X, et al. Health and ecological risk assessment of heavy metals pollution in an antimony mining region:a case study from South China[J]. Environmental Science and Pollution Research, 2017, 24(35):27573-27586. [53] 陈丽君. 土壤重金属污染防治技术研究进展[J]. 资源节约与环保, 2020(4):88. [54] DENG R J, CHEN Y L, DENG X P, et al. A critical review of resistance and oxidation mechanisms of Sb-oxidizing bacteria for the bioremediation of Sb(Ⅲ) pollution[J]. Frontiers in Microbiology, 2021, 12:2148. [55] 陈学明, 李福仪. 2000-2020年污水系统N2O相关研究文献计量学分析[J]. 环境工程, 2022, 40(6):92-96,279.
点击查看大图
计量
- 文章访问数: 82
- HTML全文浏览量: 14
- PDF下载量: 4
- 被引次数: 0