AN ATMOSPHERIC EXTINCTION CHARACTERISTICS AND VISIBILITY PREDICTION MODEL FOR TYPICAL HAZE PROCESSES AT AIRPORTS
-
摘要: 大气能见度是机场运行的重要指标之一,探究机场低能见度天气形成机理、准确预测能见度变化趋势对保障航空交通安全高效运行至关重要。选取天津机场为研究对象,开展大气光学参数、污染物浓度及气象条件监测,研究了2020年12月08—23日一次典型霾天气过程中机场大气消光特性,并基于广义加性模型(generalized additive model,GAM)和梯度提升回归树模型(gradient boost regression tree,GBRT)分别构建机场能见度预测模型,对比并确定最优模型。结果表明,在天津机场冬季一次典型霾污染引起的低能见度过程中,大气总消光系数Bext为37.4~891.7 Mm-1,平均值为346.0 Mm-1。其中,Bsp、Bap、Bag、Bsg对Bext的贡献占比分别为73.7%、11.7%、5.9%和8.7%,气溶胶污染是造成能见度降低的主要因素,GBRT分析显示1 μm以下粒子对总消光的相对贡献最大。同时,大气黑碳(BC)和NO2也会通过消光作用降低能见度。利用气象参数和污染物浓度数据,通过GAM和GBRT模型均可以对机场能见度进行较为准确的预测,其中GBRT模型的拟合效果优于GAM模型,表明GBRT模型可在多发的霾天气中提供准确可靠的机场能见度预测。Abstract: Atmospheric visibility is one of the most important indicators of airport operations, and it is vital to investigate the mechanism of low visibility weather formation at airports and to accurately predict visibility trends for the safe and efficient operation of air traffic. By monitoring the atmospheric optical parameters, pollutant concentrations, and meteorological conditions at Tianjin Airport, we studied the extinction characteristics of the airport atmosphere during typical haze weather from 8th to 23rd December 2020, constructed airport visibility prediction models based on the generalized additive model (GAM) and the gradient boost regression tree (GBRT) respectively, and compared the prediction results to determine the optimal model. The results indicated that during a typical winter haze pollution-induced low visibility at Tianjin Airport, the Bext ranged from 37.4 Mm-1 to 891.7 Mm-1, with a mean value of 346.0 Mm-1. The contributions of Bsp, Bap, Bag, and Bsg to Bext respectively accounted for 73.7%, 11.7%, 5.9%, and 8.7%, with aerosol pollution being the visibility reduction, and GBRT analysis showed that the relative contribution of particles below 1 μm to total extinction was the largest. Meanwhile, BC and NO2 can also reduce visibility through extinction. Using meteorological parameters and pollutant concentration data, both the GAM and GBRT models can provide more accurate prediction on airport visibility, and the GBRT model fitting better than the GAM model, indicating that the GBRT model can provide accurate and reliable airport visibility predictions in frequent haze weather.
-
Key words:
- airport pollution /
- atmospheric extinction characteristics /
- low visibility prediction /
- GAM /
- GBRT
-
[1] LACK D A, CAPPA C D. Impact of brown and clear carbon on light absorption enhancement, single scatter albedo and absorption wavelength dependence of black carbon[J]. Atmospheric Chemistry and Physics, 2010, 10(9):4207-4220. [2] HAN B, WANG L, DENG Z, et al. Source emission and attribution of a large airport in Central China[J]. Science of the Total Environment, 2022, 829:154519. [3] 王琼,毕晓辉,张裕芬,等.杭州市大气颗粒物消光组分的粒径分布特征研究[J].中国环境科学,2012,32(1):10-16. [4] 姚青,韩素芹,蔡子颖,等.天津城区春季大气气溶胶消光特性研究[J].中国环境科学,2012,32(5):795-802. [5] VECCHI R, BERNARDONI V, VALENTINI S, et al. Assessment of light extinction at a European polluted urban area during wintertime:impact of PM1 composition and sources[J]. Environmental Pollution, 2018, 233:679-689. [6] ZHU L, ZHU G, HAN L, et al. The application of deep learning in airport visibility forecast[J]. Atmospheric and Climate Sciences, 2017, 7(3):314. [7] WON W S, OH R, LEE W, et al. Impact of fine particulate matter on visibility at incheon international airport, South Korea[J]. Aerosol and Air Quality Research, 2020, 20(5):1048-1061. [8] ZHANG J, ZHAO P, WANG X, et al. Main factors influencing winter visibility at the Xinjin Flight College of the Civil Aviation Flight University of China[J]. Advances in Meteorology, 2020. [9] 刘旗洋,乔枫雪,陈博,等.不同场景下的交通能见度估算模型的应用[J].大气科学学报,2022,45(2):179-190. [10] YAO T T, HUANG X F, HE L Y, et al. High time resolution observation and statistical analysis of atmospheric light extinction properties and the chemical speciation of fine particulates[J]. Science China Chemistry, 2010, 53(8):1801-1808. [11] CICHOWICZ R., WIELGOSI?SKI G., FETTER W. Dispersion of atmospheric air pollution in summer and winter season[J]. Environmental Monitoring and Assess, 2017, 189(12):605. [12] 中国民用航空局. 2019年民航机场生产统计公报[R].中国民用航空局.2020.03.09. [13] 何镓祺,于兴娜,朱彬,等.南京冬季气溶胶消光特性及霾天气低能见度特征[J].中国环境科学, 2016(6):1645-1653. [14] PENNDORF R. Tables of the refractive index for standard air and the Rayleigh scattering coefficient for the spectral region between 0.2 and 20.0 μ and their application to atmospheric optics[J]. Josa, 1957, 47(2):176-182. [15] SLOANE C S, WOLFF G T. Prediction of ambient light scattering using a physical model responsive to relative humidity:validation with measurements from Detroit[J]. Atmospheric Environment (1967), 1985, 19(4):669-680. [16] BERGSTROM R W, RUSSELL P B, Hignett P. Wavelength dependence of the absorption of black carbon particles:predictions and results from the TARFOX experiment and implications for the aerosol single scattering albedo[J]. Journal of the Atmospheric Sciences, 2002, 59(3):567-577. [17] 吴兑,毛节泰,邓雪娇,等.珠江三角洲黑碳气溶胶及其辐射特性的观测研究[J].中国科学, 2009, 39(11):1542-1553. [18] HANSEN A D A, ROSEN H, NOVAKOV T. The aethalometer-an instrument for the real-time measurement of optical absorption by aerosol particles[J]. Science of the Total Environment, 1984, 36:191-196. [19] CURTO J D, PINTO J C. The corrected vif (cvif)[J]. Journal of Applied Statistics, 2011, 38(7):1499-1507. [20] HASTIE T J, TIBSHIRANI R J. Generalized additive models Monographs on statistics and applied probability[J]. Chapman & Hall, 1990, 43:335. [21] 韩博,姚婷玮,王立婕,等.天津机场区域大气NO2及O3影响因子研究[J].中国环境科学, 2020, 40(6):2398-2408. [22] JACKSON L S, CARSLAW N, CARSLAW D C, et al. Modelling trends in OH radical concentrations using generalized additive models[J]. Atmospheric Chemistry and Physics, 2009, 9(6):2021-2033. [23] FRIEDMAN J H. Greedy function approximation:a gradient boosting machine[J]. Annals of Statistics, 2001, 29(5):1189-1232. [24] 刘新罡,张远航,曾立民,等.广州市大气能见度影响因子的贡献研究[J].气候与环境研究, 2006(6):733-738. [25] 杨寅山,倪长健,邓也,等.成都市冬季大气消光系数及其组成的特征研究[J].环境科学学报, 2019, 39(5):1425-1432. [26] ZHU J, CHEN L, LIAO H, et al. Correlations between PM2.5 and ozone over China and associated underlying reasons[J]. Atmosphere, 2019, 10(7):352. [27] 杜川利,余兴,李星敏,等.西安泾河夏季黑碳气溶胶及其吸收特性的观测研究[J].中国环境科学, 2013, 33(4):613-622. [28] BARBER P W. Absorption and scattering of light by small particles[J]. Journal of Colloid & Interface Science, 1984, 98(1):290-291. [29] 曹双. 南京北郊大气气溶胶的粒径分布和消光特性研究[D].南京:南京信息工程大学,2016. [30] YAN S, ZHENG Y, CHEN Y, et al. Atmospheric visibility prediction based on multi-model fusion[C]//2021 International Conference on Image, Video Processing, and Artificial Intelligence, SPIE, 2021, 12076:168-175. [31] 余东昌, 赵文芳, 聂凯, 等. 基于LightGBM算法的能见度预测模型[J]. 计算机应用, 2021, 41(4):1035-1041.
点击查看大图
计量
- 文章访问数: 44
- HTML全文浏览量: 5
- PDF下载量: 4
- 被引次数: 0