中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

垃圾焚烧厂渗沥液处理系统碳排放特性研究

冮沁彦 马小茜 刘超 汪涵 王亚宜

冮沁彦, 马小茜, 刘超, 汪涵, 王亚宜. 垃圾焚烧厂渗沥液处理系统碳排放特性研究[J]. 环境工程, 2024, 42(4): 31-39. doi: 10.13205/j.hjgc.202404004
引用本文: 冮沁彦, 马小茜, 刘超, 汪涵, 王亚宜. 垃圾焚烧厂渗沥液处理系统碳排放特性研究[J]. 环境工程, 2024, 42(4): 31-39. doi: 10.13205/j.hjgc.202404004
GANG Qinyan, MA Xiaoqian, LIU Chao, WANG Han, WANG Yayi. RESEARCH ON CARBON EMISSION CHARACTERISTICS OF MUNICIPAL SOLID WASTE INCINERATION LEACHATE TREATMENT SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(4): 31-39. doi: 10.13205/j.hjgc.202404004
Citation: GANG Qinyan, MA Xiaoqian, LIU Chao, WANG Han, WANG Yayi. RESEARCH ON CARBON EMISSION CHARACTERISTICS OF MUNICIPAL SOLID WASTE INCINERATION LEACHATE TREATMENT SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(4): 31-39. doi: 10.13205/j.hjgc.202404004

垃圾焚烧厂渗沥液处理系统碳排放特性研究

doi: 10.13205/j.hjgc.202404004
基金项目: 

上海市国资委技术创新和能级提升项目"垃圾渗滤液提标处理和智慧管控技术装备集成与示范"(2018001)

详细信息
    作者简介:

    冮沁彦(2000-),女,硕士研究生,主要研究方向为水污染控制和微生物技术。2230505@tongji.edu.cn

    通讯作者:

    王亚宜(1971-),女,教授,主要研究方向为水污染控制和微生物技术。wyywater@126.com

RESEARCH ON CARBON EMISSION CHARACTERISTICS OF MUNICIPAL SOLID WASTE INCINERATION LEACHATE TREATMENT SYSTEM

  • 摘要: 推进污水处理过程碳减排对于实现碳达峰、碳中和目标具有重要意义。垃圾焚烧渗沥液成分复杂、污染物浓度高,其处理系统是温室气体的重要排放源之一。然而,目前渗沥液处理系统碳排放特性尚不清晰,这阻碍了减污降碳方案制定与实施步伐。以长三角地区某典型生活垃圾焚烧发电厂渗沥液处理系统为研究对象,采用生命周期评价方法(life cycle assessment,LCA)对其进行碳足迹核算,重点关注其在不同水质、水量条件下的碳排放特性并评估其减污降碳潜力。结果表明:渗沥液处理系统的直接碳排放量呈春夏高、秋冬低的趋势,其中,N2O是最重要的直接碳排放来源(0.4~47.7 t CO2 eq);间接碳排放量远高于直接碳排放量,电力是最大的间接碳排放来源(78.2~121.3 t CO2 eq)。虽然外加碳源可在一定程度上减少直接碳排放量,但会增加间接碳排放量。回收厌氧消化(anaerobic digestion,AD)单元中产生的CH4(0~160.3 t CO2 eq)是实现渗沥液处理系统碳中和重要途径。垃圾分类后虽然直接和间接碳排放量有所降低,但碳回收量有限,使得渗沥液处理厂净碳排放量增加,渗沥液处理系统从碳汇转变为碳源。总体来说,在渗沥液处理系统碳减排策略中,电力是需要重点控制的碳排放来源,可通过提高脱氮效果来减少直接碳排放量。在各渗沥液处理单元中,两级硝化反硝化(A/O)工艺的升级改进至关重要,可有效实现节能减排。
  • [1] GALLAGHER K S, ZHANG F, ORVIS R, et al. Assessing the Policy gaps for achieving China’s climate targets in the Paris Agreement[J]. Nature Communications, 2019, 10(1): 1256.
    [2] LIU Z, DENG Z, HE G, et al. Challenges and opportunities for carbon neutrality in China[J]. Nature Reviews Earth & Environment, 2022, 3(2): 141-155.
    [3] ZHAO X, JIN X K, GUO W, et al. China’s urban methane emissions from municipal wastewater treatment plant[J]. Earth’s Future, 2019, 7(4): 480-490.
    [4] SONG C, ZHU J J, WILLIS J L, et al. Methane emissions from municipal wastewater collection and treatment systems[J]. Environmental Science & Technology, 2023, 57(6): 2248-2261.
    [5] ZHANG J, XIAO K, HUANG X. Full-scale MBR applications for leachate treatment in China: practical, technical, and economic features[J]. Journal of Hazardous Materials, 2020, 389: 122138.
    [6] BOSMANS A, VANDERREYDT I, GEYSEN D, et al. The crucial role of Waste-to-Energy technologies in enhanced landfill mining: a technology review[J]. Journal of Cleaner Production, 2013, 55: 10-23.
    [7] 马小茜,张哲,刘超,等.生活垃圾焚烧厂渗沥液厌氧氨氧化脱氮效能及微生物机理分析[J].环境工程,2021,39(11):110-118.
    [8] ZHANG L Y, BAI H, ZHANG Y W, et al. Life cycle assessment of leachate treatment strategies[J]. Environmental Science & Technology, 2021, 55(19): 13264-13273.
    [9] YANG G, ZHANG Q, ZHAO Z, et al. How does the "Zero-waste City" strategy contribute to carbon footprint reduction in China?[J]. Waste Management, 2023, 156: 227-235.
    [10] CHEN Q W, LAI X, GU H H, et al. Investigating carbon footprint and carbon reduction potential using a cradle-to-cradle LCA approach on lithium-ion batteries for electric vehicles in China[J]. Journal of Cleaner Production, 2022, 369: 133342.
    [11] XIAN C F, GONG C, LU F, et al. The evaluation of greenhouse gas emissions from sewage treatment with urbanization: understanding the opportunities and challenges for climate change mitigation in China’s low-carbon pilot city, Shenzhen[J]. Science of the Total Environment, 2023, 855: 158629.
    [12] ZHOU X X, YANG F, YANG F, et al. Analyzing greenhouse gas emissions from municipal wastewater treatment plants using pollutants parameter normalizing method:a case study of Beijing[J]. Journal of Cleaner Production, 2022, 376: 134093.
    [13] BIAN R X, CHEN J H, ZHANG T X, et al. Influence of the classification of municipal solid wastes on the reduction of greenhouse gas emissions: a case study of Qingdao City, China[J]. Journal of Cleaner Production, 2022, 376: 134275.
    [14] 翟明洋,周长波,李晟昊,等.污水处理行业温室气体核算模型开发及减排潜力分析[J].中国环境管理,2023,14(6):57-64.
    [15] 付博,林向宇,章雨柔,等.基于生命周期评价的东南沿海农村生活污水处理环境影响研究[J].环境科学学报,2024,44(1):451-461.
    [16] IPCC. 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories[M]. 2019.
    [17] VASILAKI V, MASSARA T, STANCHEV P, et al. A decade of nitrous oxide (N2O) monitoring in full-scale wastewater treatment processes: a critical review[J]. Water Research, 2019, 161: 392-412.
    [18] VALKOVA T, PARRAVICINI V, SARACEVIC E, et al. A method to estimate the direct nitrous oxide emissions of municipal wastewater treatment plants based on the degree of nitrogen removal[J]. Journal of Environmental Management, 2021, 279: 111563.
    [19] YAO H, GAO X Y, GUO J B, et al. Contribution of nitrous oxide to the carbon footprint of full-scale wastewater treatment plants and mitigation strategies: a critical review[J]. Environmental Pollution, 2022,314: 120295.
    [20] WU Z P, DUAN H R, LI K L, et al. A comprehensive carbon footprint analysis of different wastewater treatment plant configurations[J]. Environmental Research, 2022, 214: 113818.
    [21] MAAVARA T, LAUERWALD R, LARUELLE G G, et al. Nitrous oxide emissions from inland waters: are IPCC estimates too high?[J]. Global change biology, 2019, 25(2): 473-488.
    [22] ALIYU G, LUO J, DI H J, et al. Nitrous oxide emissions from China’s croplands based on regional and crop-specific emission factors deviate from IPCC 2006 estimates[J]. Science of the Total Environment, 2019, 669: 547-558.
    [23] 中国城镇供水排水协会.城镇水务系统碳核算与减排路径技术指南[M].北京:中国建筑工业出版社,2022.
    [24] MAKTABIFARD M, ZABOROWSKA E, MAKINIA J. Achieving energy neutrality in wastewater treatment plants through energy savings and enhancing renewable energy production[J]. Reviews in Environmental Science and Bio/Technology, 2018, 17: 655-689.
    [25] 陈燕.厌氧—好氧工艺处理垃圾焚烧厂渗滤液的效果分析及其碳排放核算[D].无锡:江南大学,2015.
    [26] TODT D, DRSCH P. Mechanism leading to N2O production in wastewater treating biofilm systems[J]. Reviews in Environmental Science and Bio/Technology, 2016, 15: 355-378.
    [27] MAO W L, YANG R L, SHI H Q, et al. Identification of key water parameters and microbiological compositions triggering intensive N2O emissions during landfill leachate treatment process[J]. Science of the Total Environment, 2022, 833: 155135.
    [28] LI J M, ZENG W, LIU H, et al. Performances and mechanisms of simultaneous nitrate and phosphate removal in sponge iron biofilter[J]. Bioresource Technology, 2021, 337: 125390.
    [29] WANG J H, ZHANG J, XIE H J, et al. Methane emissions from a full-scale A/A/O wastewater treatment plant[J]. Bioresource Technology, 2011, 102(9): 5479-5485.
    [30] WANG S, LIU Q X, LI J, et al. Methane in wastewater treatment plants: status, characteristics, and bioconversion feasibility by methane oxidizing bacteria for high value-added chemicals production and wastewater treatment[J]. Water Research, 2021, 198: 117122.
    [31] OKAMOTO Y, LIENHARD J H. How RO membrane permeability and other performance factors affect process cost and energy use: a review[J]. Desalination, 2019, 470: 114064.
    [32] LIAO X W, TIAN Y J, GAN Y W, et al. Quantifying urban wastewater treatment sector’s greenhouse gas emissions using a hybrid life cycle analysis method:an application on Shenzhen city in China[J]. Science of the Total Environment, 2020, 745: 141176.
    [33] LI T Q, LV F, QIU J J, et al. Substance flow analysis on the leachate DOM molecules along five typical membrane advanced treatment processes[J]. Water Research, 2023, 228: 119348.
    [34] 付真真.UASB-MBR-NF-RO 处理生活垃圾焚烧厂渗滤液[J].海峡科学,2021(6):79-84.
    [35] 杨扬.某生活垃圾焚烧发电厂渗滤液处理工程设计[J].化工管理,2019(10):195-196.
    [36] 陈杰,肖诚斌,桂宏桥,等.生活垃圾焚烧发电厂的渗滤液处理工程实例[J].净水技术,2022,41(3):100-103

    ,109.
    [37] 花发奇,唐湘姬.生活垃圾焚烧发电厂渗滤液处理工程实例[J].中国新技术新产品,2018(17):38-39.
    [38] 阳灿.预处理+UASB+MBR+NF+RO组合工艺处理垃圾发电厂渗滤液工程实践[J].净水技术,2019,38(2):102-107.
    [39] GUAN Q Y, QU Y H, ZHAI Y J, et al. Enhancement of methane production in anaerobic digestion of high salinity organic wastewater: the synergistic effect of nano-magnetite and potassium ions[J]. Chemosphere, 2023, 318: 137974.
    [40] CHEN L, FANG W, LIANG J S, et al. Biochar application in anaerobic digestion: performances, mechanisms, environmental assessment and circular economy[J]. Resources, Conservation and Recycling, 2023, 188: 106720.
    [41] WANG H, WANG J J, ZHOU M D, et al. A versatile control strategy based on organic carbon flow analysis for effective treatment of incineration leachate using an anammox-based process[J]. Water Research, 2022, 215: 118261.
  • 加载中
计量
  • 文章访问数:  181
  • HTML全文浏览量:  29
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-10
  • 网络出版日期:  2024-06-01

目录

    /

    返回文章
    返回