中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳氮比对MBBR系统脱氮性能及微生物群落的影响

曾锦涌 柯水洲 袁辉洲 祝凉 马晶伟 袁佳佳

曾锦涌, 柯水洲, 袁辉洲, 祝凉, 马晶伟, 袁佳佳. 碳氮比对MBBR系统脱氮性能及微生物群落的影响[J]. 环境工程, 2024, 42(4): 100-110. doi: 10.13205/j.hjgc.202404012
引用本文: 曾锦涌, 柯水洲, 袁辉洲, 祝凉, 马晶伟, 袁佳佳. 碳氮比对MBBR系统脱氮性能及微生物群落的影响[J]. 环境工程, 2024, 42(4): 100-110. doi: 10.13205/j.hjgc.202404012
ZENG Jinyong, KE Shuizhou, YUAN Huizhou, ZHU Liang, MA Jingwei, YUAN Jiajia. EFFECTS OF CARBON TO NITROGEN RATIO ON DENITRIFICATION PERFORMANCE AND MICROBIAL COMMUNITY IN AN MBBR SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(4): 100-110. doi: 10.13205/j.hjgc.202404012
Citation: ZENG Jinyong, KE Shuizhou, YUAN Huizhou, ZHU Liang, MA Jingwei, YUAN Jiajia. EFFECTS OF CARBON TO NITROGEN RATIO ON DENITRIFICATION PERFORMANCE AND MICROBIAL COMMUNITY IN AN MBBR SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(4): 100-110. doi: 10.13205/j.hjgc.202404012

碳氮比对MBBR系统脱氮性能及微生物群落的影响

doi: 10.13205/j.hjgc.202404012
基金项目: 

深圳职业技术学院科技发展基金项目(1028/6019210020K0)

详细信息
    作者简介:

    曾锦涌(1999-),男,硕士,主要研究方向为生活污水处理技术。zjyong973045782@gmail.com

    通讯作者:

    袁辉洲(1973-),女,副教授,主要研究方向为污水处理和水质净化工程。yuanhzh@szpt.edu.cn

EFFECTS OF CARBON TO NITROGEN RATIO ON DENITRIFICATION PERFORMANCE AND MICROBIAL COMMUNITY IN AN MBBR SYSTEM

  • 摘要: 采用不同碳氮比(C/N)的合成废水,比较了连续流和序批式2种运行方式下单级移动床生物膜反应器(MBBR)的脱氮性能差异。结合宏基因组测序技术,对不同阶段载体上的生物膜进行了微生物群落和功能基因丰度分析,并分析了反应器内主要的氮素代谢通路,旨在探讨不同C/N和运行方式对MBBR系统脱氮性能和生物膜群落结构的影响。结果显示:C/N的变化对MBBR工艺NH+4-N去除影响不大,各阶段NH+4-N去除率均保持在95%以上,但同步硝化反硝化(SND)效率因受到反硝化性能的限制,各阶段存在较大差异。此外,SBMBBR反应器中总无机氮(TIN)去除率始终高于CFMBBR反应器,原因可能是反硝化过程中起关键作用的narGHInapABnirKnirSnorBCnosZ功能基因的序列数总和存在差异。不同运行方式下的反应器中主要优势菌门和菌种差异明显,也是SBMBBR与CFMBBR反应器之间脱氮性能差异较大的重要原因之一。该结果可为MBBR反应器处理较低C/N的城市生活废水的优化设计和运行提供参考。
  • [1] 2020年中国生态环境状况公报(摘录)[J]. 环境保护, 2021, 49(11): 47-68.
    [2] 高延耀, 顾国维, 周琪,等. 水污染控制工程[M]. 3版.北京:高等教育出版社,2007.
    [3] GAO X J, ZHANG T, WANG B, et al. Advanced nitrogen removal of low C/N ratio sewage in an anaerobic/aerobic/anoxic process through enhanced post-endogenous denitrification[J]. Chemosphere, 2020, 252: 126624.
    [4] 肖静, 许国仁. 低碳氮比污水对同步硝化反硝化脱氮的影响[J]. 水处理技术, 2012, 38(11): 77-80.
    [5] 赵梦月. 低碳氮比城市生活污水部分短程硝化及其应用的研究[D]. 北京:北京工业大学,2017.
    [6] 徐傲, 巫寅虎, 陈卓,等. 黄河流域城镇污水处理厂建设与运行现状分析[J]. 给水排水, 2022, 58(12): 27-36.
    [7] 胡洪营. 中国城镇污水处理与再生利用发展报告 1978—2020[M]. 北京:中国建筑工业出版社,2021.
    [8] 丁红. 低碳氮比生活污水脱氮处理技术研究现状[J]. 化工设计通讯, 2021, 47(7): 88-89.
    [9] KRAIGHER B, KOSJEK T, HEATH E, et al. Influence of pharmaceutical residues on the structure of activated sludge bacterial communities in wastewater treatment bioreactors[J]. Water Res, 2008, 42(17): 4578-4588.
    [10] LABELLE M A, JUTEAU P, JOLICOEUR M, et al. Seawater denitrification in a closed mesocosm by a submerged moving bed biofilm reactor[J]. Water Res, 2005, 39(14): 3409-3417.
    [11] 郑开恩. SBSMBBR复合反应器处理低C/N污水的特性研究[D].邯郸:河北工程大学,2013.
    [12] 敬双怡, 谢者行, 朱浩君,等. A/SMBBR和SBR对低C/N工业废水的处理效果对比[J]. 水处理技术, 2019, 45(11): 99-102.
    [13] 周家中, 吴迪, 郑临奥,等. 纯膜MBBR工艺在国内外的工程应用[J]. 中国给水排水, 2020, 36(22): 37-47.
    [14] MCQUARRIE J P, BOLTZ J P. Moving bed biofilm reactor technology: process applications, design, and performance[J]. Water Environ Res, 2011, 83(6): 560-575.
    [15] BOLTZ J P, MORGENROTH E, BROCKMANN D, et al. Systematic evaluation of biofilm models for engineering practice: components and critical assumptions[J]. Water Sci Technol, 2011, 64(4): 930-944.
    [16] CIESIELSKI S, KULIKOWSKA D, KACZOWKA E, et al. Characterization of bacterial structures in two-stage moving-bed biofilm reactor (MBBR) during nitrification of the landfill leachate[J]. J Microbiol Biotechnol, 2010, 20(7): 1140-1151.
    [17] CHEN C, SUN F, ZHANG H, et al. Evaluation of COD effect on anammox process and microbial communities in the anaerobic baffled reactor (ABR)[J]. Bioresource Technology, 2016, 216: 571-578.
    [18] 祝凉,袁辉洲,施周. 一种流化性能良好的MBBR装置[P]. 广东:CN216918752U,2022-07-08.
    [19] 黎镛, 袁辉洲, 柯水洲,等. 微生物载体对MBBR工艺性能及微生物群落结构的影响[J]. 环境工程, 2021, 39(12): 100-106.
    [20] 龚灵潇. 缺氧/好氧生物膜工艺处理低碳氮比生活污水的脱氮特性[D].北京:北京工业大学,2013.
    [21] WEIMER P J, MOEN G N. Quantitative analysis of growth and volatile fatty acid production by the anaerobic ruminal bacterium Megasphaera elsdenii T81[J]. Appl Microbiol Biotechnol, 2013, 97(9): 4075-4081.
    [22] 廖榆敏, 汤兵, 陈秋雯,等. 移动床生物反应器启动特性研究进展[J]. 水处理技术, 2011, 37(2): 5-8

    ,22.
    [23] 国家环境保护总局,水和废水监测分析方法编委会. 水和废水监测分析方法[M]. 4版. 北京:中国环境科学出版社,2002.
    [24] MARTN-PASCUAL J, LPEZ-LPEZ C, CERD A, et al. Comparative kinetic study of carrier type in a moving bed system applied to organic matter removal in urban wastewater treatment[J]. Water, Air, & Soil Pollution, 2012, 223(4): 1699-712.
    [25] CALDERN K, MARTN-PASCUAL J, POYATOS J M, et al. Comparative analysis of the bacterial diversity in a lab-scale moving bed biofilm reactor (MBBR) applied to treat urban wastewater under different operational conditions[J]. Bioresource Technology, 2012, 121: 119-26.
    [26] 祝凉, 施周, 袁辉洲,等. 磺胺嘧啶对纯膜MBBR氨氧化性能及氨氧化菌群的影响[J]. 环境工程学报, 2022, 16(1): 332-342.
    [27] 魏小涵, 毕学军, 尹志轩,等. 温度和DO对MBBR系统硝化和反硝化的影响[J]. 中国环境科学, 2019, 39(2): 612-618.
    [28] CHEN X, ZHANG Q, ZHU Y A, et al. Response of wastewater treatment performance, microbial composition and functional genes to different C/N ratios and carrier types in MBBR inoculated with heterotrophic nitrification-aerobic denitrification bacteria[J]. Bioresource Technology, 2021, 336: 125339.
    [29] 张婷婷. 污水生物脱氮中进水碳氮比对N2O释放的影响及其减量化控制[D].济南:山东大学,2012.
    [30] DI BELLA G, MANNINA G. Intermittent aeration in a hybrid moving bed biofilm reactor for carbon and nutrient biological removal[J]. Water, 2020, 12(2): 492.
    [31] 陈申良. 聚糖菌内源反硝化强化生物转笼脱氮及低能耗污水处理研究[D].镇江:江苏大学,2022.
    [32] LIU S, LI H, KANG J, et al. Improving simultaneous N, P, and C removal and microbial population dynamics in an anaerobic-aerobic-anoxic SBR (AOA-SBR) treating municipal wastewater by altering organic loading rate (OLR)[J]. Environmental Technology & Innovation, 2021, 24: 102081.
    [33] OLUSEYI OSUNMAKINDE C, SELVARAJAN R, MAMBA B B, et al. Profiling bacterial diversity and potential pathogens in wastewater treatment plants using high-throughput sequencing analysis[J]. Microorganisms, 2019, 7(11): 506.
    [34] RAMESH S, RAJESH M, MATHIVANAN N. Characterization of a thermostable alkaline protease produced by marine Streptomyces fungicidicus MML1614[J]. Bioprocess Biosyst Eng, 2009, 32(6): 791-800.
    [35] DAS S, LYLA P, KHAN S A. Marine microbial diversity and ecology: importance and future perspectives[J]. Current Science, 2006: 1325-1335.
    [36] PENG Y K, LI J, LU J L, et al. Characteristics of microbial community involved in early biofilms formation under the influence of wastewater treatment plant effluent[J]. Journal of Environmental Sciences, 2018, 66: 113-124.
    [37] KIELAK A M, BARRETO C C, KOWALCHUK G A, et al. The ecology of acidobacteria: moving beyond genes and genomes[J]. Frontiers in Microbiology, 2016, 7:744.
    [38] NITTAMI T, SHOJI T, KOSHIBA Y, et al. Investigation of prospective factors that control Kouleothrix (Type 1851) filamentous bacterial abundance and their correlation with sludge settleability in full-scale wastewater treatment plants[J]. Process Safety and Environmental Protection, 2019, 124: 137-42.
    [39] SHINTANI T, LIU W T, HANADA S, et al. Micropruina glycogenica gen. nov., sp. nov., a new Gram-positive glycogen-accumulating bacterium isolated from activated sludge[J]. International Journal of Systematic and Evolutionary Microbiology, 2000, 50(1): 201-207.
    [40] LI J Y, HUA Z S, LIU T, et al. Selective enrichment and metagenomic analysis of three novel comammox Nitrospira in a urine-fed membrane bioreactor[J]. ISME Communications, 2021, 1(1): 7.
    [41] YANG L, LOU J, WANG H Z, et al. Use of an improved high-throughput absolute abundance quantification method to characterize soil bacterial community and dynamics[J]. Science of the Total Environment, 2018, 633: 360-371.
    [42] van KESSEL M A, STULTIENS K, POL A, et al. Simultaneous anaerobic and aerobic ammonia and methane oxidation under oxygen limitation conditions[J]. Applied and Environmental Microbiology, 2021, 87(13): e00043.
  • 加载中
计量
  • 文章访问数:  181
  • HTML全文浏览量:  31
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-20
  • 网络出版日期:  2024-06-01

目录

    /

    返回文章
    返回