CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊
JST China 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

羟胺-氨三乙酸强化Fe(Ⅲ)/H2O2体系降解橙黄G的研究

王真然 彭藴斓 刘义青 付永胜

王真然, 彭藴斓, 刘义青, 付永胜. 羟胺-氨三乙酸强化Fe(Ⅲ)/H2O2体系降解橙黄G的研究[J]. 环境工程, 2024, 42(4): 111-118. doi: 10.13205/j.hjgc.202404013
引用本文: 王真然, 彭藴斓, 刘义青, 付永胜. 羟胺-氨三乙酸强化Fe(Ⅲ)/H2O2体系降解橙黄G的研究[J]. 环境工程, 2024, 42(4): 111-118. doi: 10.13205/j.hjgc.202404013
WANG Zhenran, PENG Yunlan, LIU Yiqing, FU Yongsheng. HYDROXYLAMINE-NITRILOTRIACETIC ACID ENHANCED Fe(Ⅲ)/H2O2 SYSTEM FOR DEGRADATION OF ORANGE G[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(4): 111-118. doi: 10.13205/j.hjgc.202404013
Citation: WANG Zhenran, PENG Yunlan, LIU Yiqing, FU Yongsheng. HYDROXYLAMINE-NITRILOTRIACETIC ACID ENHANCED Fe(Ⅲ)/H2O2 SYSTEM FOR DEGRADATION OF ORANGE G[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(4): 111-118. doi: 10.13205/j.hjgc.202404013

羟胺-氨三乙酸强化Fe(Ⅲ)/H2O2体系降解橙黄G的研究

doi: 10.13205/j.hjgc.202404013
基金项目: 

四川省科技厅应用基础研究项目(2021YJ0385)

详细信息
    作者简介:

    王真然(1996-),男,博士研究生,主要研究方向为水污染控制。wangzr@my.swjtu.edu.cn

    通讯作者:

    刘义青(1989-),男,讲师,主要研究方向为水污染控制。liuyq@swjtu.edu.cn

HYDROXYLAMINE-NITRILOTRIACETIC ACID ENHANCED Fe(Ⅲ)/H2O2 SYSTEM FOR DEGRADATION OF ORANGE G

  • 摘要: 为改进传统芬顿法存在的pH应用范围窄、铁泥产量大的缺陷,构建了Fe(Ⅲ)-氨三乙酸(NTA)/羟胺(HAm)/H2O2体系以降解偶氮染料橙黄G(OG)。结果表明:Fe(Ⅲ)-NTA/HAm/H2O2体系可在中性条件下高效降解OG,降解率可达到90%以上,[DK]·OH是体系内降解OG的主要活性物种。OG在Fe(Ⅲ)-NTA/HAm/H2O2体系中的降解速率随着溶液pH的升高而降低,适当增加Fe(Ⅲ)、NTA、HAm、H2O2浓度有利于OG在该体系中的降解,但过量添加这些试剂会对OG的降解产生抑制作用。NTA的引入可将体系的pH应用范围从酸性拓展至弱碱性,而加入HAm可通过促进体系内Fe(Ⅱ)再生以大幅削减Fe的用量。与传统芬顿法相比,Fe(Ⅲ)-NTA/HAm/H2O2体系有效弥补了其存在的短板,具有较大的应用潜力。
  • [1] 袁思杰, 张芮铭. 染料废水处理技术研究进展[J]. 染料与染色, 2022, 59(4): 55-62.
    [2] 沈九兵, 谭牛高, 李志超, 等. 印染丝光淡碱液MVR蒸馏系统研究[J]. 现代化工, 2022, 42(6): 206-210.
    [3] 张庆云, 宋静茹, 谢学辉, 等. 果糖共代谢强化功能菌群/菌株降解活性黑5效能差异及机制比较[J]. 微生物学通报, 2023, 50(3): 938-953.
    [4] 秦秋浦. 偶氮类合成染料的微生物脱色与降解[J]. 应用化工, 2013, 8(增刊1): 172-177.
    [5] 张理军, 严群, 周子琳, 等. 硅藻土负载MnFe2O4纳米颗粒活化PMS降解金橙Ⅱ[J]. 环境工程, 2022, 40(11): 61-68.
    [6] 张华春, 熊国臣. 偶氮染料废水处理方法研究进展[J]. 染料与染色, 2016, 53(3): 45-51.
    [7] CHENG L, WEI M Y, HUANG L H, et al. Efficient H2O2 oxidation of organic dyes catalyzed by simple copper(Ⅱ) ions in bicarbonate aqueous solution[J]. Industrial & Engineering Chemistry Research, 2014, 53(9): 3478-3485.
    [8] LI B, DONG Y C, ZOU C, et al. Iron(Ⅲ)-Alginate fiber complex as a highly effective and stable heterogeneous Fenton photocatalyst for mineralization of organic dye[J]. Industrial & Engineering Chemistry Research, 2014, 53(11): 4199-4206.
    [9] 姚迎迎. 高级氧化技术在印染废水处理中的研究进展[J]. 广东化工, 2022, 49(4): 117-119.
    [10] LIU Y B, ZHANG X M, DENG J H, et al. A novel CNTs-Fe3O4 synthetized via a ball-milling strategy as efficient Fenton-like catalyst for degradation of sulfonamides[J]. Chemosphere, 2021, 277: 130305.
    [11] 张波, 戚永洁, 蒋素英, 等. 铁碳微电解-生物膜法-高级氧化工艺处理印染废水中试研究[J]. 环境工程, 2018, 36(3): 44-48.
    [12] PIGNATELLO J, OLIVEROS E, MACKAY A. Advanced oxidation processes for organic contaminant destruction based on Fenton reaction and related chemistry[J]. Critical Reviews in Environmental Science and Technology, 2006, 36: 1-84.
    [13] DA Y F, LIU Y, CHEN Y, et al. Promotion of O2 activation by ZIF-8 derived N-rich aluminum-graphite (Al-Gr-NPC) composite for non-radical degradation of antibiotic at neutral pH[J]. Separation and Purification Technology, 2023, 308: 122806.
    [14] 周小银, 朱铭, 赵聚姣, 等. 紫外光/超声芬顿处理工业废水的研究进展[J]. 环境工程, 2023, 41(增刊1): 1-8.
    [15] VERMA M, HARITASH A K. Degradation of amoxicillin by Fenton and Fenton-integrated hybrid oxidation processes[J]. Journal of Environmental Chemical Engineering, 2019, 7(1): 102886.
    [16] WANG S X, WANG H B, LIU Y Q, et al. Effective degradation of sulfamethoxazole with Fe2+-zeolite/peracetic acid[J]. Separation and Purification Technology, 2020, 233: 115973.
    [17] LIU Y, WANG J L. Multivalent metal catalysts in Fenton/Fenton-like oxidation system: a critical review[J]. Chemical Engineering Journal, 2023, 466: 143147.
    [18] CHEN Q, LV F, ZHANG H, et al. Where should Fenton go for the degradation of refractory organic contaminants in wastewater?[J]. Water Research, 2023, 229: 119479.
    [19] WANG L H, JIANG J, MA J, et al. A review on advanced oxidation processes homogeneously initiated by copper(Ⅱ)[J]. Chemical Engineering Journal, 2022, 427: 131721.
    [20] CHEN L W, LI X C, ZHANG J, et al. Production of hydroxyl radical via the activation of hydrogen peroxide by hydroxylamine[J]. Environmental Science & Technology, 2015, 49(17): 10373-10379.
    [21] MEI S C, LI L, HUANG G X, et al. Heterogeneous Fenton water purification catalyzed by iron phosphide (FeP)[J]. Water Research, 2023, 241: 120151.
    [22] JIN Y Y, SUN S P, YANG X Y, et al. Degradation of ibuprofen in water by Fe(Ⅱ)-NTA complex-activated persulfate with hydroxylamine at neutral pH[J]. Chemical Engineering Journal, 2018, 337: 152-160.
    [23] 马红芳, 杨浩宇, 田委民, 等. 氨三乙酸强化零价铁/过一硫酸盐降解橙黄G[J]. 中国环境科学, 2021, 41(4): 1597-1607.
    [24] DUAN J, PANG S-Y, WANG Z, et al. Hydroxylamine driven advanced oxidation processes for water treatment: a review[J]. Chemosphere, 2021, 262: 128390.
    [25] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002: 368-370.
    [26] 姜成春, 庞素艳, 马军, 等. 钛盐光度法测定Fenton氧化中的过氧化氢[J]. 中国给水排水, 2006, 22(4): 88-91.
    [27] HU Y, LI Y L, HE J Y, et al. EDTA-Fe(Ⅲ) Fenton-like oxidation for the degradation of malachite green[J]. Journal of Environmental Management, 2018, 226: 256-263.
    [28] LI Y F, SUN J H, SUN S P. Comparison of metoprolol degradation by Fe(Ⅲ)-NTA modified Fenton-like reaction in the absence and presence of manganese: efficiency and intermediates[J]. Chemical Engineering Journal, 2017, 313: 769-776.
    [29] PENG S W, ZHANG W J, HE J, et al. Enhancement of Fenton oxidation for removing organic matter from hypersaline solution by accelerating ferric system with hydroxylamine hydrochloride and benzoquinone[J]. Journal of Environmental Sciences, 2016, 41: 16-23.
    [30] ZHANG D X, XIANG Y P, LIU G L, et al. Mechanism and controlling factors on rapid methylmercury degradation by ligand-enhanced Fenton-like reaction at circumneutral pH[J]. Chemosphere, 2023, 324: 138291.
    [31] LIU Y Q, HE X X, FU Y S, et al. Degradation kinetics and mechanism of oxytetracycline by hydroxyl radical-based advanced oxidation processes[J]. Chemical Engineering Journal, 2016, 284: 1317-1327.
    [32] DONG H Y, LI Y, WANG S C, et al. Both Fe(Ⅳ) and radicals are active oxidants in the Fe(Ⅱ)/peroxydisulfate process[J]. Environmental Science & Technology Letters, 2020, 7(3): 219-224.
    [33] LI Z Y, LIU Y L, HE P N, et al. Further understanding the role of hydroxylamine in transformation of reactive species in Fe(Ⅱ)/peroxydisulfate system[J]. Chemical Engineering Journal, 2021, 418: 129464.
    [34] MOTEKAITIS R J, MARTELL A E. The iron(Ⅲ) and iron(Ⅱ) complexes of nitrilotriacetic acid[J]. Journal of Coordination Chemistry, 1994, 31(1): 67-78.
    [35] ZHOU P, ZHANG J, LIANG J, et al. Activation of persulfate/copper by hydroxylamine via accelerating the cupric/cuprous redox couple[J]. Water Science and Technology, 2016, 73(3): 493-500.
    [36] LIU Y Q, HE X X, DUAN X D, et al. Photochemical degradation of oxytetracycline: influence of pH and role of carbonate radical[J]. Chemical Engineering Journal, 2015, 276: 113-121.
    [37] RAO Y F, QU L, YANG H, et al. Degradation of carbamazepine by Fe(Ⅱ)-activated persulfate process[J]. Journal of Hazardous Materials, 2014, 268: 23-32.
    [38] LI X, ZHOU M H, PAN Y W. Degradation of diclofenac by H2O2 activated with pre-magnetization Fe0: influencing factors and degradation pathways[J]. Chemosphere, 2018, 212: 853-862.
    [39] BAE S, KIM D, LEE W. Degradation of diclofenac by pyrite catalyzed Fenton oxidation[J]. Applied Catalysis B: Environmental, 2013, 134-135: 93-102.
    [40] ZHANG Y Q, ZHANG J F, XIAO Y J, et al. Kinetic and mechanistic investigation of azathioprine degradation in water by UV, UV/H2O2 and UV/persulfate[J]. Chemical Engineering Journal, 2016, 302: 526-534.
  • 加载中
计量
  • 文章访问数:  48
  • HTML全文浏览量:  4
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-18
  • 网络出版日期:  2024-06-01

目录

    /

    返回文章
    返回