HYDROXYLAMINE-NITRILOTRIACETIC ACID ENHANCED Fe(Ⅲ)/H2O2 SYSTEM FOR DEGRADATION OF ORANGE G
-
摘要: 为改进传统芬顿法存在的pH应用范围窄、铁泥产量大的缺陷,构建了Fe(Ⅲ)-氨三乙酸(NTA)/羟胺(HAm)/H2O2体系以降解偶氮染料橙黄G(OG)。结果表明:Fe(Ⅲ)-NTA/HAm/H2O2体系可在中性条件下高效降解OG,降解率可达到90%以上,[DK]·OH是体系内降解OG的主要活性物种。OG在Fe(Ⅲ)-NTA/HAm/H2O2体系中的降解速率随着溶液pH的升高而降低,适当增加Fe(Ⅲ)、NTA、HAm、H2O2浓度有利于OG在该体系中的降解,但过量添加这些试剂会对OG的降解产生抑制作用。NTA的引入可将体系的pH应用范围从酸性拓展至弱碱性,而加入HAm可通过促进体系内Fe(Ⅱ)再生以大幅削减Fe的用量。与传统芬顿法相比,Fe(Ⅲ)-NTA/HAm/H2O2体系有效弥补了其存在的短板,具有较大的应用潜力。Abstract: To improve the shortcomings of the traditional Fenton method, such as narrow pH application range and high iron mud production, the present study developed an Fe(Ⅲ)-nitrilotriacetic acid (NTA)/hydroxylamine (HAm)/H2O2 system for the degradation of azo dye Orange G (OG). Experimental results demonstrated that Fe(Ⅲ)-NTA/HAm/H2O2 system could effectively degrade OG under neutral condition with a degradation rate of 90% above, and ·OH was the dominant reactive species responsible for OG degradation in this system. The degradation rate of OG in the Fe(Ⅲ)-NTA/HAm/H2O2 system decreased with the increase of solution pH. Appropriate increases in Fe(Ⅲ), NTA, HAm, and H2O2 concentrations were beneficial for OG degradation in this system, but excessive addition of these reagents would inhibit OG degradation. The introduction of NTA could expand the pH application range of the traditional Fenton process from acidic to weakly alkaline, and the addition of HAm remarkedly reduced the dosage of Fe by promoting the regeneration of Fe(Ⅱ) in the system. Compared with the traditional Fenton process, this Fe(Ⅲ)-NTA/HAm/H2O2 system showed great potential for practical applications.
-
Key words:
- hydroxylamine /
- nitrilotriacetic acid /
- Fenton process /
- advanced oxidation technologies /
- Orange G
-
[1] 袁思杰, 张芮铭. 染料废水处理技术研究进展[J]. 染料与染色, 2022, 59(4): 55-62. [2] 沈九兵, 谭牛高, 李志超, 等. 印染丝光淡碱液MVR蒸馏系统研究[J]. 现代化工, 2022, 42(6): 206-210. [3] 张庆云, 宋静茹, 谢学辉, 等. 果糖共代谢强化功能菌群/菌株降解活性黑5效能差异及机制比较[J]. 微生物学通报, 2023, 50(3): 938-953. [4] 秦秋浦. 偶氮类合成染料的微生物脱色与降解[J]. 应用化工, 2013, 8(增刊1): 172-177. [5] 张理军, 严群, 周子琳, 等. 硅藻土负载MnFe2O4纳米颗粒活化PMS降解金橙Ⅱ[J]. 环境工程, 2022, 40(11): 61-68. [6] 张华春, 熊国臣. 偶氮染料废水处理方法研究进展[J]. 染料与染色, 2016, 53(3): 45-51. [7] CHENG L, WEI M Y, HUANG L H, et al. Efficient H2O2 oxidation of organic dyes catalyzed by simple copper(Ⅱ) ions in bicarbonate aqueous solution[J]. Industrial & Engineering Chemistry Research, 2014, 53(9): 3478-3485. [8] LI B, DONG Y C, ZOU C, et al. Iron(Ⅲ)-Alginate fiber complex as a highly effective and stable heterogeneous Fenton photocatalyst for mineralization of organic dye[J]. Industrial & Engineering Chemistry Research, 2014, 53(11): 4199-4206. [9] 姚迎迎. 高级氧化技术在印染废水处理中的研究进展[J]. 广东化工, 2022, 49(4): 117-119. [10] LIU Y B, ZHANG X M, DENG J H, et al. A novel CNTs-Fe3O4 synthetized via a ball-milling strategy as efficient Fenton-like catalyst for degradation of sulfonamides[J]. Chemosphere, 2021, 277: 130305. [11] 张波, 戚永洁, 蒋素英, 等. 铁碳微电解-生物膜法-高级氧化工艺处理印染废水中试研究[J]. 环境工程, 2018, 36(3): 44-48. [12] PIGNATELLO J, OLIVEROS E, MACKAY A. Advanced oxidation processes for organic contaminant destruction based on Fenton reaction and related chemistry[J]. Critical Reviews in Environmental Science and Technology, 2006, 36: 1-84. [13] DA Y F, LIU Y, CHEN Y, et al. Promotion of O2 activation by ZIF-8 derived N-rich aluminum-graphite (Al-Gr-NPC) composite for non-radical degradation of antibiotic at neutral pH[J]. Separation and Purification Technology, 2023, 308: 122806. [14] 周小银, 朱铭, 赵聚姣, 等. 紫外光/超声芬顿处理工业废水的研究进展[J]. 环境工程, 2023, 41(增刊1): 1-8. [15] VERMA M, HARITASH A K. Degradation of amoxicillin by Fenton and Fenton-integrated hybrid oxidation processes[J]. Journal of Environmental Chemical Engineering, 2019, 7(1): 102886. [16] WANG S X, WANG H B, LIU Y Q, et al. Effective degradation of sulfamethoxazole with Fe2+-zeolite/peracetic acid[J]. Separation and Purification Technology, 2020, 233: 115973. [17] LIU Y, WANG J L. Multivalent metal catalysts in Fenton/Fenton-like oxidation system: a critical review[J]. Chemical Engineering Journal, 2023, 466: 143147. [18] CHEN Q, LV F, ZHANG H, et al. Where should Fenton go for the degradation of refractory organic contaminants in wastewater?[J]. Water Research, 2023, 229: 119479. [19] WANG L H, JIANG J, MA J, et al. A review on advanced oxidation processes homogeneously initiated by copper(Ⅱ)[J]. Chemical Engineering Journal, 2022, 427: 131721. [20] CHEN L W, LI X C, ZHANG J, et al. Production of hydroxyl radical via the activation of hydrogen peroxide by hydroxylamine[J]. Environmental Science & Technology, 2015, 49(17): 10373-10379. [21] MEI S C, LI L, HUANG G X, et al. Heterogeneous Fenton water purification catalyzed by iron phosphide (FeP)[J]. Water Research, 2023, 241: 120151. [22] JIN Y Y, SUN S P, YANG X Y, et al. Degradation of ibuprofen in water by Fe(Ⅱ)-NTA complex-activated persulfate with hydroxylamine at neutral pH[J]. Chemical Engineering Journal, 2018, 337: 152-160. [23] 马红芳, 杨浩宇, 田委民, 等. 氨三乙酸强化零价铁/过一硫酸盐降解橙黄G[J]. 中国环境科学, 2021, 41(4): 1597-1607. [24] DUAN J, PANG S-Y, WANG Z, et al. Hydroxylamine driven advanced oxidation processes for water treatment: a review[J]. Chemosphere, 2021, 262: 128390. [25] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002: 368-370. [26] 姜成春, 庞素艳, 马军, 等. 钛盐光度法测定Fenton氧化中的过氧化氢[J]. 中国给水排水, 2006, 22(4): 88-91. [27] HU Y, LI Y L, HE J Y, et al. EDTA-Fe(Ⅲ) Fenton-like oxidation for the degradation of malachite green[J]. Journal of Environmental Management, 2018, 226: 256-263. [28] LI Y F, SUN J H, SUN S P. Comparison of metoprolol degradation by Fe(Ⅲ)-NTA modified Fenton-like reaction in the absence and presence of manganese: efficiency and intermediates[J]. Chemical Engineering Journal, 2017, 313: 769-776. [29] PENG S W, ZHANG W J, HE J, et al. Enhancement of Fenton oxidation for removing organic matter from hypersaline solution by accelerating ferric system with hydroxylamine hydrochloride and benzoquinone[J]. Journal of Environmental Sciences, 2016, 41: 16-23. [30] ZHANG D X, XIANG Y P, LIU G L, et al. Mechanism and controlling factors on rapid methylmercury degradation by ligand-enhanced Fenton-like reaction at circumneutral pH[J]. Chemosphere, 2023, 324: 138291. [31] LIU Y Q, HE X X, FU Y S, et al. Degradation kinetics and mechanism of oxytetracycline by hydroxyl radical-based advanced oxidation processes[J]. Chemical Engineering Journal, 2016, 284: 1317-1327. [32] DONG H Y, LI Y, WANG S C, et al. Both Fe(Ⅳ) and radicals are active oxidants in the Fe(Ⅱ)/peroxydisulfate process[J]. Environmental Science & Technology Letters, 2020, 7(3): 219-224. [33] LI Z Y, LIU Y L, HE P N, et al. Further understanding the role of hydroxylamine in transformation of reactive species in Fe(Ⅱ)/peroxydisulfate system[J]. Chemical Engineering Journal, 2021, 418: 129464. [34] MOTEKAITIS R J, MARTELL A E. The iron(Ⅲ) and iron(Ⅱ) complexes of nitrilotriacetic acid[J]. Journal of Coordination Chemistry, 1994, 31(1): 67-78. [35] ZHOU P, ZHANG J, LIANG J, et al. Activation of persulfate/copper by hydroxylamine via accelerating the cupric/cuprous redox couple[J]. Water Science and Technology, 2016, 73(3): 493-500. [36] LIU Y Q, HE X X, DUAN X D, et al. Photochemical degradation of oxytetracycline: influence of pH and role of carbonate radical[J]. Chemical Engineering Journal, 2015, 276: 113-121. [37] RAO Y F, QU L, YANG H, et al. Degradation of carbamazepine by Fe(Ⅱ)-activated persulfate process[J]. Journal of Hazardous Materials, 2014, 268: 23-32. [38] LI X, ZHOU M H, PAN Y W. Degradation of diclofenac by H2O2 activated with pre-magnetization Fe0: influencing factors and degradation pathways[J]. Chemosphere, 2018, 212: 853-862. [39] BAE S, KIM D, LEE W. Degradation of diclofenac by pyrite catalyzed Fenton oxidation[J]. Applied Catalysis B: Environmental, 2013, 134-135: 93-102. [40] ZHANG Y Q, ZHANG J F, XIAO Y J, et al. Kinetic and mechanistic investigation of azathioprine degradation in water by UV, UV/H2O2 and UV/persulfate[J]. Chemical Engineering Journal, 2016, 302: 526-534.
点击查看大图
计量
- 文章访问数: 50
- HTML全文浏览量: 4
- PDF下载量: 5
- 被引次数: 0