GRADED CRYSTALLIZATION AND PHOSPHORUS RECOVERY BY FORM OF STRUVITE FROM PHOSPHOGYPSUM LEACHATE
-
摘要: 考虑磷资源的不可再生性和不可或缺性,基于鸟粪石结晶法处理和回收磷石膏渗滤液中的磷具有重要的环境和经济意义。系统研究了湖北省某肥料厂磷石膏堆场渗滤液废水中高效回收磷的可行性和结晶参数优化。结果显示:改变单次磷回收结晶条件[pH、n(Mg)/n(P)和n(N)/n(P)],渗滤液中磷回收率最大值仅为67.8%。响应曲面设计实验进一步证实,参数因子增加到一定程度后,磷回收率随着pH、n(Mg)/n(P)和n(N)/n(P)的增加没有显著变化。综合考虑各因素对废水回收磷的影响,确定在磷石膏渗滤液中磷回收的最优条件参数为pH=8.6,n(Mg)/n(P)=1.6,n(N)/n(P)=1。采用分级结晶的方法,经过3次结晶,磷回收率达到97.9%。结合仪器表征和Minteq模型分析结果,磷回收阶段主要产物为鸟粪石以及少量的磷酸钙,且鸟粪石中重金属含量极低。Abstract: Considering the non-renewable and indispensable nature of phosphorus resources, the treatment and recovery of phosphorus from phosphogypsum leachate based on the crystallization method of bird droppings has important environmental and economic significance. This paper systematically studied the feasibility of recovering phosphorus in the phosphogypsum leachate from a fertilizer company in Hubei Province and the crystallization optimization. The results showed that the main reaction parameters posed a limited effect on obtaining a higher phosphorus recovery efficiency in a single reaction process, and the maximum phosphorus recovery efficiency was only 67.8%. The latter response surface design experimental results also confirmed that after a certain stage, the increase in pH, n(Mg)/n(P), and n(N)/n(P) did not significantly enhance the phosphorus recovery efficiency. Considering the influence of various factors on phosphorus recovery, the optimal condition parameters were determined as follows: pH=8.6, n(Mg)/n(P)=1.6, n(N)/n(P)=1. Finally, a graded crystallization method was adopted, and after three crystallization cycles, phosphorus recovery efficiency reached 97.9%. After characterizing the products in the phosphorus recovery stage through EPMA, XRD and Minteq modeling analysis, the products were mainly struvite with a small amount of calcium phosphate, and the heavy metal content in struvite was extremely low, ensuring its subsequent application safely in agricultural as a potential fertilizer.
-
[1] TAYIBI H, CHOURA M, LPEZ F A, et al. Environmental impact and management of phosphogypsum[J]. Journal of Environment Management, 2009, 90: 2377-2386. [2] 叶学东. 2019年我国磷石膏利用现状及形势分析[J]. 磷肥与复肥, 2020, 35(7): 1-3. [3] 谷守玉, 苗俊艳, 侯翠红, 等. 磷石膏综合利用途径及关键共性技术创新研究建议[J]. 矿物保护与应用, 2020, 3(3): 115-120. [4] 秦延文, 马迎群, 王丽婧, 等. 长江流域总磷污染:分布特征·来源解析·控制对策[J]. 环境科学研究, 2018, 31(1): 9-14. [5] ZENG L L, BIAN X, ZHAO L, et al. Effect of phosphogypsum on physiochemical and mechanical behaviour of cement stabilized dredged soil from Fuzhou, China[J]. Geomechanics for Energy and the Environment, 2021, 25: 195-205. [6] 查学芳, 覃应机, 吴攀, 等. 磷石膏堆场渗漏影响下岩溶地下水地球化学过程[J].生态学杂志, 2018, 37(6): 1708-1715. [7] 杨卫, 李瑞清. 长江和汉江总磷污染特征及成因分析[J]. 中国农村水利水电, 2021(1): 42-47. [8] 稽晓燕, 彭丹. "十三五"时期长江流域总磷浓度变化特征[J]. 环境工程, 2022, 39(8): 1-9. [9] 魏凯. 化学法处理磷石膏渣场渗滤液工程实例[J]. 给水排水, 2020, 46(7): 87-90. [10] 李兵, 韦莎, 谭伟. 磷石膏库渗滤液处理技术进展[J]. 磷肥与复肥, 2020, 35(2): 45-48. [11] 姜飞. 改性粘土矿物对磷石膏渗滤液中氟、磷同步去除研究[D]. 成都: 成都理工大学, 2021. [12] MIROSLAV H, PAVEL H, JOSEF B, et al. Arsenic as a contaminant of struvite when recovering phosphorus from phosphogypsum wastewater[J]. Journal of the Taiwan Institute of Chemical Engineers, 2021, 129: 91-96. [13] LE CORRE K S, JONES E V, HOBBS P, et al. Phosphorus recovery from wastewater by struvite crystallization[J]. Critical Reviews in Environmental Science and Technology, 2009, 39: 433-477. [14] WANG Y Z, MOU J W, LIU X M, et al. Phosphorus recovery from wastewater by struvite in response to initial nutrients concentration and nitrogen/phosphorus molar ratio[J]. Science of Total Environment, 2021, 789: 147970. [15] VALLE S F, GIROTO A S, GUIMARAES G G F, et al. Co-fertilization of sulfur and struvite-phosphorus in a slow-release fertilizer improves soybean cultivation[J]. Frontiers in Plant Science, 2022, 13: 861574. [16] 王崇臣, 郝晓地, 王鹏, 等. 不同pH下鸟粪石(MAP)法目标产物的分析与表征[J]. 环境化学, 2010, 29(4): 759-763. [17] 李咏梅, 刘鸣燕, 袁志文. 鸟粪石结晶成粒技术研究进展[J]. 环境污染与防治, 2011, 24(18): 14-18. [18] LIU X N, WEN G Q, HU Z Y, et al. Coupling effects of pH and Mg/P ratio on P recovery from anaerobic digester supernatant by struvite formation[J]. Journal of Cleaner Production, 2018, 198: 633-641. [19] MOULESSEHOUL A, GALLART-MATEU D, HARRACHE D, et al. Conductimetric study of struvite crystallization inwater as a function of pH[J]. Journal of Crystal Growth, 2017, 471: 42-52. [20] 王松, 谢洪勇. 鸟粪石结晶法回收高浓度酸性含磷废水中磷的研究[J]. 江苏农业科学, 2020, 48(4): 282-285. [21] WANG Y Z, DA J R, DENG Y X, et al. Competitive adsorption of heavy metals between Ca-P and Mg-P products from wastewater during struvite crystallization[J]. Journal of Environmental Management, 2023, 335: 117552.
点击查看大图
计量
- 文章访问数: 94
- HTML全文浏览量: 13
- PDF下载量: 6
- 被引次数: 0