COMPARATIVE STUDY ON VOCs POLLUTION CHARACTERISTICS AND SOURCE ANALYSIS BETWEEN LANZHOU DOWNTOWN AREA AND XIGU REFINING CHEMICAL INDUSTRY ZONE
-
摘要: 兰州市作为我国西部典型的工业城市,近年来臭氧(O3)污染较为显著,而挥发性有机物(VOCs)在O3和PM2.5等二次污染物生成中起关键作用。为研究兰州市VOCs污染特性和来源,分别选取中心城区东部兰州大学和西部西固炼化工业区监测站点的VOCs组分监测数据,基于PMF模型对2站点VOCs污染特性及来源进行研究和对比分析。结果表明:西固炼化工业区VOCs排放水平(年均值70.86×10-9)整体高于中心城区(年均值32.24×10-9),烷、烯、卤代烃是两区域主要的VOCs构成物种。其中卤代烃浓度超过中心城区2.5倍,烯烃、芳香烃浓度超过2倍,而炔烃的污染水平有所下降;整体上两区域VOCs浓度变化趋势均为冬、春季浓度高(中心城区12月最高,西固炼化工业区5月最高),夏、秋季浓度低(最低对应7月,8月);PMF源解析结果显示,机动车尾气源、油气挥发源以及有机溶剂使用源是中心城区3类主要的VOCs来源,而工业源是西固炼化工业区最重要的VOCs来源,因此兰州市VOCs减排控制重点为减少石油化工产业、机动车尾气以及溶剂使用等人为源排放。Abstract: As a typical industrial city in western China, Lanzhou is having significant ozone pollution situation in recent years, and volatile organic compounds (VOCs) play a key role in the generation of secondary pollutants such as O3 and PM2.5. To study the characteristics and sources of VOCs pollution in Lanzhou, this study selected the VOCs components monitoring data from the monitoring stations of Lanzhou University in downtown area and Xigu Refining and Chemical Industry Zone in the west, and conducted research and comparative analysis on VOCs pollution characteristics and sources of the two stations based on the PMF model. The results showed that the average annual value of VOCs in the central urban area was 32.24×10-9, with the highest concentration in December and the lowest in July; the average annual value of VOCs in the Xigu Refining and Chemical Industry Zone was 70.86×10-9, with the highest concentration in May and the lowest in August; alkanes, alkenes, and halogenated hydrocarbons were the main VOCs composition species in the two regions. The overall VOCs emission level of the Xigu Refining and Chemical Industrial Zone was higher than that of the downtown area, in which the concentration of halogenated hydrocarbons was 2.5 times higher than that of the central urban area, the concentration of olefins and aromatic hydrocarbon was more than 2 times higher, and the pollution level of alkynes was decreased. Overall, the trend of VOCs concentration changes in both areas was higher in winter and spring months, and lower in summer and autumn months. PMF source analysis results showed that vehicle exhaust gas source, oil and gas volatilization source, and organic solvents application source are the three main VOCs sources in the downtown area, while the industrial source was the most important VOCs source in Xigu Refining and Chemical Industrial Zone. Therefore, Lanzhou’s VOCs emission reduction control should be focused on reducing anthropogenic sources such as the petrochemical industry, motor vehicle exhaust, and solvent use.
-
Key words:
- atmospheric VOCs /
- PMF model /
- source analysis /
- pollution characteristics
-
[1] 李跃武,柴文轩,赵月,等.我国重点区域环境大气VOCs监测体系现状及发展方向[J].环境科学研究,2023,36(5):857-865. [2] 温肖宇,赵文婷,罗淑贞,等.运城市区夏季大气挥发性有机物污染特征及来源解析[J].环境科学,2022,43(6):2979-2986. [3] 郑欢,毛东,解梦怡,等.西安市某工业园夏季VOCs浓度特征及O3、SOA生成潜势[J].中国环境监测,2021,37(6):50-61. [4] 王帅,崔建升,冯亚平,等.石家庄市挥发性有机物和臭氧的污染特征及源解析[J].环境科学,2020,41(12):5325-5335. [5] 熊超,李建军,杨复沫,等.成都市冬季重污染过程中挥发性有机物污染特征及来源解析[J].环境污染与防治,2020,42(5):590-596, 603. [6] 李泱,常莉敏,吕沛诚,等.兰州市大气臭氧生成的敏感性分析及其前体物减排对策建议[J].环境科学学报,2021,41(5):1628-1639. [7] 肖龙,王帅,周颖,等.中国典型背景站夏季VOCs污染特征及来源解析[J].中国环境科学,2021,41(5):2014-2027. [8] PAATERO P, TAPPER U. Positive matrix factorization: a non-negative factor model with optimal utilization of error estimates of data values[J]. Environmetrics,1994,5:111-126. [9] 任义君,马双良,王思维,等.郑州市春季大气污染过程VOCs特征、臭氧生成潜势及源解析[J].环境科学,2020,41(6):2577-2585. [10] 蔡乐天,许潇锋,许纯领,等.宿迁市VOCs污染特征和来源解析[J].环境科学学报,2021,41(11):4341-4352. [11] PAATERO P. User’s Guide for Positive Matrix Factorization Programs PMF2 and PMF3, Part 1-2:Tutorial[M].US Environmental Protection Agency,2000. [12] 王成,曹靖原,段小琳,等.山西省四城市冬季PM2.5中碳质组分特征及来源分析[J].环境工程,2021,39(6):114-121. [13] 吴方堃,王跃思,安俊琳,等.北京奥运时段VOCs浓度变化、臭氧产生潜势及来源分析研究[J].环境科学,2010,31(1):10-16. [14] 沈龙娇,梁胜文,吴玉婷,等.武汉市居民区大气VOCs的污染特征和来源解析[J].南京信息工程大学学报(自然科学版),2018,10(5):527-535. [15] 马敏劲,苏雨萌,丁凡,等.兰州及其卫星城市空气污染异同及气象影响要素[J].干旱气象,2020,38(5):834-846. [16] 郭文凯,刘镇,刘文博,等.兰州生物质燃烧VOCs排放特征及其大气环境影响[J].中国环境科学,2019,39(1):40-49. [17] 韩丽,陈军辉,姜涛,等.成都市冬季挥发性有机物污染特征及来源研究[J].四川环境,2019,38(3):120-125. [18] WATSON J G, CHOW J C, FUJITA E M. Review of volatile organic compound source apportionment by chemical mass balance[J]. Atmospheric Environment,2001,35(9):1567-1584. [19] 张栋,于世杰,王楠,等.郑州市冬季VOCs污染特征、来源及健康风险评估[J].环境科学学报,2020,40(8):2935-2943. [20] GARCIA J P, BEYNE-MASCLET S, MOUVIER G, et al. Emissions of volatile organic compounds by coal-fired power stations[J]. Atmospheric Environment,1992,26(9):1589-1597. [21] 付加鹏,金春江,程星星,等.重点行业VOCs排放特征统计分析[J].环境工程,2020,38(6):188-194, 125. [22] 王学臣,王帅,刘大喜,等.典型工业源挥发性有机物排放特征及臭氧生成潜势分析[J].环境污染与防治,2020,42(11):1387-1391. [23] LIU Y, SHAO M, FU L L, et al. Source profiles of volatile organic compounds (VOCs) measured in China: part Ⅰ[J]. Atmospheric Environment, 2008,42(25):6247-6260. [24] 洪沁,常宏宏.家具涂装行业VOCs污染特征分析[J].环境工程,2017,35(5):82-86. [25] ZHONG Z M, SHA Q E, ZHENG J Y, et al. Sector-based VOCs emission factors and source profiles for the surface coating industry in the Pearl River Delta region of China[J]. Science of the Total Environment,2017,583:19-28. [26] 吴方堃,王跃思,安俊琳,等.北京奥运时段VOCs浓度变化、臭氧产生潜势及来源分析研究[J].环境科学,2010,31(1):10-16. [27] 杨燕萍,陈强,孟宪红,等.兰州市夏季挥发性有机物污染特征及来源解析[J].环境科学,2022,43(12):5442-5452. [28] 杨亚美. 中国西部某工业城市VOCs污染成因及减排对策和建议[D].兰州:兰州大学,2021. [29] 练川,周江,陈思琳,等.贵阳市某工业园区环境空气中VOCs的污染特征与健康风险评价[J].环境工程,2018,36(7):161-164, 154. [30] 王帅,王秀艳,杨文,等.淄博市城区臭氧超标期间的VOCs污染特征与来源解析[J].环境科学,2022,43(3):1277-1285. [31] 付昱萌,杨红刚,卢民瑜,等.鄂州市大气VOCs污染特征及来源解析[J].环境科学,2020,41(3):1085-1092.
点击查看大图
计量
- 文章访问数: 76
- HTML全文浏览量: 14
- PDF下载量: 8
- 被引次数: 0