中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

DBD等离子体协同Mn-TiO2/γ-Al2O3催化剂降解二甲苯

李茹 李晓康 冯燕 王雪艳 邢倩云

李茹, 李晓康, 冯燕, 王雪艳, 邢倩云. DBD等离子体协同Mn-TiO2/γ-Al2O3催化剂降解二甲苯[J]. 环境工程, 2024, 42(4): 157-166. doi: 10.13205/j.hjgc.202404019
引用本文: 李茹, 李晓康, 冯燕, 王雪艳, 邢倩云. DBD等离子体协同Mn-TiO2/γ-Al2O3催化剂降解二甲苯[J]. 环境工程, 2024, 42(4): 157-166. doi: 10.13205/j.hjgc.202404019
LI Ru, LI Xiaokang, FENG Yan, WANG Xueyan, XING Qianyun. DEGRADATION OF XYLENE BY DBD PLASMA IN COLLABORATION WITH Mn-TiO2/γ-Al2O3 CATALYST[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(4): 157-166. doi: 10.13205/j.hjgc.202404019
Citation: LI Ru, LI Xiaokang, FENG Yan, WANG Xueyan, XING Qianyun. DEGRADATION OF XYLENE BY DBD PLASMA IN COLLABORATION WITH Mn-TiO2/γ-Al2O3 CATALYST[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(4): 157-166. doi: 10.13205/j.hjgc.202404019

DBD等离子体协同Mn-TiO2/γ-Al2O3催化剂降解二甲苯

doi: 10.13205/j.hjgc.202404019
基金项目: 

国家自然科学基金项目(11105102)

详细信息
    作者简介:

    李茹(1972-),女,教授,主要研究方向为环境污染控制及资源化技术。xjliru@163.com

DEGRADATION OF XYLENE BY DBD PLASMA IN COLLABORATION WITH Mn-TiO2/γ-Al2O3 CATALYST

  • 摘要: 采用浸渍法制备Mn-TiO2/γ-Al2O3催化剂,协同介质阻挡放电(DBD)等离子体降解二甲苯。探究了不同放电功率、初始质量浓度、气体流量下DBD等离子体对二甲苯的氧化性能;利用XRD和FT-IR对催化剂进行表征,以分析DBD等离子体放电前后催化剂的晶型与性能。结果表明:在放电功率为20 W,二甲苯进气浓度为38.62 mg/m3,进气流量为0.65 L/min条件下,协同Mn-TiO2/γ-Al2O3催化剂后,二甲苯降解率达到75.8%,反应器的能效为0.1027 g/(kW·h),同时O3浓度降低至36.94 mg/m3。表征结果显示,DBD等离子体放电前后未改变催化剂晶型与性能。为进一步分析降解二甲苯过程中产生的中间产物,通过FT-IR、GC-MS及发射光谱法进行诊断,发现加入催化剂后中间产物的种类和数量减少、发射光谱强度增强、特征谱线的数量增多。研究结果可为DBD等离子体在降解二甲苯应用中的性能优化和催化剂的选择提供理论参考。
  • [1] LIU R, WU H, SHI J H, et al. Recent progress on catalysts for catalytic oxidation of volatile organic compounds: a review[J]. Catalysis Science & Technology, 2022, 12(23): 6945-6991.
    [2] DAVIDSON C J, HANNIGAN J H, BOWEN S E. Effects of inhaled combined benzene, toluene, ethylbenzene, and xylenes (BTEX): toward an environmental exposure model[J]. Environmental toxicology and pharmacology, 2021, 81: 103518.
    [3] LIU B S, YANG Y, YANG T, et al. Effect of photochemical losses of ambient volatile organic compounds on their source apportionment[J]. Environment International, 2023,172: 107766.
    [4] YU B, YUAN Z, YU Z, et al. BTEX in the environment: an update on sources, fate, distribution, pretreatment, analysis, and removal techniques[J]. Chemical Engineering Journal, 2022,435(Part1): 134825.
    [5] MU Y B, WILLIAMS P T. Recent advances in the abatement of volatile organic compounds (VOCs) and chlorinated-VOCs by non-thermal plasma technology: a review[J]. Chemosphere, 2022,308(Part3): 136481.
    [6] LU W J, ABBAS Y, MUSTAFA M F, et al. A review on application of dielectric barrier discharge plasma technology on the abatement of volatile organic compounds[J]. Frontiers of Environmental Science & Engineering, 2019, 13(2): 1-19.
    [7] LI S J, DANG X Q, YU X, et al. The application of dielectric barrier discharge non-thermal plasma in VOCs abatement: a review[J]. Chemical Engineering Journal, 2020, 388: 124275.
    [8] PANDA P, MAHANTA R K, MOHANTY S, et al. Abatement of gas-phase VOCs via dielectric barrier discharge plasmas[J]. Environmental Science and Pollution Research, 2021, 28: 28666-28679.
    [9] ZHANG H, LI K, SUN T, et al. The removal of styrene using a dielectric barrier discharge (DBD) reactor and the analysis of the by-products and intermediates[J]. Research on Chemical Intermediates, 2013, 39(3): 1021-1035.
    [10] 刘鑫. 低温等离子体催化协同降解混合VOCs(甲苯、丙酮及乙酸乙酯)的研究[D]. 上海:东华大学, 2022.
    [11] 郑毅文. 介质阻挡放电协同催化降解邻二氯苯的实验研究[D]. 杭州:浙江大学, 2021.
    [12] LIU Z, ZHANG Y, JIANG S, et al. Enhanced catalytic performance and reduced by-products emission on plasma catalytic oxidation of high-concentration toluene using Mn-Fe/rGO catalysts[J]. Journal of Environmental Chemical Engineering, 2022, 10(6): 108770.
    [13] YANG J, LIU S Y, HE T Y, et al. Degradation of toluene by DBD plasma-catalytic method with Mn<em>xCo<em>yCe<em>zO<em>n catalysts: characterization of catalyst, catalytic activity and continuous test[J]. Journal of Environmental Chemical Engineering, 2021, 9(6): 106361.
    [14] LYU Y, LI C T, DU X Y, et al. Catalytic removal of toluene over manganese oxide-based catalysts: a review[J]. Environmental Science and Pollution Research, 2020, 27: 2482-2501.
    [15] CHANG T, MA C L, SHEN Z X, et al. Mn-based catalysts for post non-thermal plasma catalytic abatement of VOCs: a review on experiments, simulations and modeling[J]. Plasma Chemistry and Plasma Processing, 2021, 41(5): 1239-1278.
    [16] DONG S L, WANG Y F, YANG J, et al. Performance and mechanism analysis of degradation of toluene by DBD plasma-catalytic method with MnO<em>x/Al2O3 catalyst[J]. Fuel, 2022, 319: 123721.
    [17] JIANG L Y, WANG P J, ZHANG Y F, et al. Plasma-catalytic oxidation of chlorobenzene over Co-Mn/TiO2 catalyst in a dielectric barrier discharge reactor with the segmented electrodes[J]. Journal of Environmental Chemical Engineering, 2022, 10(4): 108021.
    [18] 姜理英, 张瑜芬, 胡俊,等. NTP协同双金属锰基催化剂降解氯苯的性能研究[J]. 环境科学学报, 2021, 41(3): 922-931.
    [19] AYUB K S, ZAMAN W Q, MIRAN W, et, al. Efficient post-plasma catalytic degradation of toluene via series of Co-Cu/TiO2 catalysts[J]. 2022, 8(48): 4227-4248.
    [20] LI W J, GU Z Y, TENG F H, et al. The synergetic effect of UV rays on the decomposition of xylene in dielectric barrier discharge plasma and photocatalyst process[J]. The European Physical Journal Applied Physics, 2018, 81(2): 20801.
    [21] WU Z L, ZHOU W L, ZHU Z B, et al. Enhanced oxidation of xylene using plasma activation of an Mn/Al2O3 catalyst[J]. IEEE Transactions on Plasma Science, 2020, 48(1): 163-172.
    [22] DONG S L, WANG Y F, YANG J, et al. Performance and mechanism analysis of degradation of toluene by DBD plasma-catalytic method with MnO<em>x/Al2O3 catalyst[J]. Fuel, 2022, 319: 123721.
    [23] ZENG X L, LI B, LIU R Q, et al. Investigation of promotion effect of Cu doped MnO2 catalysts on ketone-type VOCs degradation in a one-stage plasma-catalysis system[J]. Chemical Engineering Journal, 2020, 384: 123362.
    [24] 石秀娟, 梁文俊, 尹国彬, 等. 低温等离子体协同Mn基催化剂降解氯苯研究[J]. 化工学报, 2022, 73(10): 4472-4483.
    [25] 张益坤, 姚鑫, 陈铭夏, 等. 低温等离子体除苯过程中臭氧的演变与作用[J]. 工业催化, 2020, 28(4): 68-72.
    [26] 韩丰磊, 季纯洁, 张子琦, 等. 低温等离子体协同催化技术处理VOCs研究综述[J]. Clean Coal Technology, 2022, 28(2): 23-31.
    [27] LIU P F, HE L M, ZHAO B B. Discharge and optical emission spectrum characteristics of a coaxial dielectric barrier discharge plasma-assisted combustion actuator[J]. Journal of Spectroscopy, 2020, 2020: 6034848.
  • 加载中
计量
  • 文章访问数:  66
  • HTML全文浏览量:  9
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-07
  • 网络出版日期:  2024-06-01

目录

    /

    返回文章
    返回