RESEARCH PROGRESS ON EXOGENOUS ADDITIVES FOR ANAEROBIC DIGESTION
-
摘要: 向厌氧消化系统中引入外源添加剂可提高厌氧消化系统性能,在快速启动、降低抑制作用、提高发酵效率、改善过程稳定性等方面发挥积极作用。近年来,有关厌氧消化添加剂的研究得到了迅速发展。综述了8类厌氧消化添加剂(微生物、酶、微量元素、纳米材料、吸附剂、导电材料、灰分和气体)的研究进展,重点讨论其在厌氧消化中的作用效果及作用机理,图像化呈现了各类添加剂在厌氧系统中的作用方式,讨论了添加剂使用需要关注的关键问题,并指明了目前的研究不足和未来的研究方向,旨在为厌氧消化添加剂的深入研究和应用提供重要参考。Abstract: Introducing exogenous additives into the anaerobic digestion system can improve the performance of the anaerobic digestion system and play a positive role in rapid start-up, reducing inhibition, improving fermentation efficiency, and improving process stability. In recent years, research on anaerobic digestion additives has developed rapidly. This paper reviews the research progress of eight kinds of anaerobic digestion additives (microorganisms, enzymes, trace elements, nanomaterials, adsorbents, conductive materials, ash, and gas). It focuses on discussing their effects and mechanisms in anaerobic digestion. This paper graphically presents the action modes of various additives in the anaerobic system, discusses the fundamental problems that need to be paid attention to in the use of additives, and points out the current research deficiencies and future research directions, aiming at providing essential references for the in-depth research and application of anaerobic digestion additives.
-
Key words:
- anaerobic digestion /
- additives /
- biogas /
- action effect /
- action mode
-
[1] 王凯军. 中国沼气发展历史回顾[EB/OL]. http://www.gxshuixie.com/xgxw/11536.jhtml, 2021-11-11. [2] 薛英岚, 张静, 刘宇, 等. "双碳" 目标下钢铁行业控煤降碳路线图[J]. 环境科学, 2022, 43(10): 4392-4400. [3] 瞿国华. 我国能源转型与过渡能源的合理选择[J]. 科学发展, 2022(12): 88-96. [4] XU H F, YUN S N, WANG C, et al. Improving performance and phosphorus content of anaerobic co-digestion of dairy manure with aloe peel waste using vermiculite[J]. Bioresource Technology, 2020, 301: 122753. [5] LIU M R, WEI Y Q, LENG X Y. Improving biogas production using additives in anaerobic digestion: a review[J]. Journal of Cleaner Production, 2021, 297: 126666. [6] AJAY C M, MOHAN S, DINESHA P, et al. Review of impact of nanoparticle additives on anaerobic digestion and methane generation[J]. Fuel, 2020, 277: 118234. [7] 祝其丽, 王彦伟, 谭芙蓉, 等. 复合菌系预处理和强化对玉米秸秆沼气发酵效率的影响[J]. 中国沼气, 2019, 37(4): 11-17. [8] 吴树彪, 李颖, 董仁杰, 等. 生物强化在厌氧消化过程中的应用进展[J]. 农业机械学报, 2014, 45(5): 145-154. [9] AKYOL C, INCE O, BOZAN M, et al. Fungal bioaugmentation of anaerobic digesters fed with lignocellulosic biomass: what to expect from anaerobic fungus Orpinomyces sp.[J]. Bioresource Technology, 2019, 277: 1-10. [10] CAYETANO R D A, PARK J, KIM G B, et al. Enhanced anaerobic digestion of waste-activated sludge via bioaugmentation strategy-Phylogenetic investigation of communities by reconstruction of unobserved states(PICRUSt2) analysis through hydrolytic enzymes and possible linkage to system performance[J]. Bioresource Technology, 2021, 332: 125014. [11] AHMAD A O, SADEQ H A, ALBANY Y A, et al. Biodegradation of food waste by mesophilic and thermophilic microorganisms in Duhok City[J]. Kirkuk University Journal-Scientific Studies, 2022, 17(4): 34-41. [12] SHETTY D, JOSHI A, DAGAR S S, et al. Bioaugmentation of anaerobic fungus Orpinomyces joyonii boosts sustainable biomethanation of rice straw without pretreatment[J]. Biomass & Bioenergy, 2020, 138(C): 105546. [13] LI Y, WANG C R, XU X R, et al. Bioaugmentation with a propionate-degrading methanogenic culture to improve methane production from chicken manure[J]. Bioresource Technology, 2022, 346: 126607. [14] YANG Z Y, WANG W, LIU C, et al. Mitigation of ammonia inhibition through bioaugmentation with different microorganisms during anaerobic digestion: selection of strains and reactor performance evaluation[J]. Water Research, 2019, 155: 214-224. [15] YAN Y X, YAN M, RAVENNI G, et al. Novel bioaugmentation strategy boosted with biochar to alleviate ammonia toxicity in continuous biomethanation[J]. Bioresource Technology, 2022, 343: 126146. [16] YAN Y X, YAN M, RAVENNI G, et al. Biochar enhanced bioaugmentation provides long-term tolerance under increasing ammonia toxicity in continuous biogas reactors[J]. Renewable Energy, 2022, 195: 590-597. [17] ZHANG S, CHANG J L, LIU W, et al. A novel bioaugmentation strategy to accelerate methanogenesis via adding Geobacter sulfurreducens PCA in anaerobic digestion system[J]. Science of the Total Environment, 2018, 642: 322-326. [18] FERRARO A, MASSINI G, MIRITANA V M, et al. A simplified model to simulate bioaugmented anaerobic digestion of lignocellulosic biomass: biogas production efficiency related to microbiological data[J]. Science of the Total Environment, 2019, 691: 885-895. [19] LINSONG H, LIANHUA L, YING L, et al. Bioaugmentation with methanogenic culture to improve methane production from chicken manure in batch anaerobic digestion[J]. Chemosphere, 2022, 303(P3): 135127. [20] FOTIDIS I A, WANG H, FIEDEL N R, et al. Bioaugmentation as a solution to increase methane production from an ammonia-rich substrate[J]. Environmental Science & Technology, 2014, 48(13): 7669-7676. [21] TABATABAEI M, AGHBASHLO M, VALIJANIAN E, et al. A comprehensive review on recent biological innovations to improve biogas production, part Ⅱ: mainstream and downstream strategies[J]. Renewable Energy, 2020, 146: 1392-1407. [22] 金曙光. 林业废弃物预处理提高酶解产糖及产沼气的研究[D]. 北京: 北京林业大学, 2016. [23] 孙和临, 李建昌, 邵琼丽. 不同预处理对茶树叶厌氧消化产气的影响[J]. 中国沼气, 2018, 36(3): 53-57. [24] 吕淑霞, 陈祖洁. 纤维素酶应用于酒精糟废水厌氧消化中的研究[J]. 中国沼气, 1994, 12(1): 1-5. [25] CARRRE H, DUMAS C, BATTIMELLI A, et al. Pretreatment methods to improve sludge anaerobic degradability: a review[J]. Journal of Hazardous Materials, 2010, 183(1/2/3): 1-15. [26] BONILLA S, CHOOLAEI Z, MEYER T, et al. Evaluating the effect of enzymatic pretreatment on the anaerobic digestibility of pulp and paper biosludge[J]. Biotechnology Reports, 2018, 17(C): 77-85. [27] MENG Y, LUAN F B, YUAN H R, et al. Enhancing anaerobic digestion performance of crude lipid in food waste by enzymatic pretreatment[J]. Bioresource Technology, 2017, 224: 48-55. [28] prez-rodrguez n, garcia-bernet d, DOMINGUEZ J M. Extrusion and enzymatic hydrolysis as pretreatments on corn cob for biogas production[J]. Renewable Energy, 2017, 107: 597-603. [29] FENG L Y, YAN Y Y, CHEN Y G. Kinetic analysis of waste activated sludge hydrolysis and short-chain fatty acids production at pH 10[J]. Journal of Environmental Sciences, 2009, 21(5): 589-594. [30] TASSEW F A, BERGLAND W H, DINAMARCA C, et al. Effect of particulate disintegration on biomethane potential of particle-rich substrates in batch anaerobic reactor[J]. Applied Sciences-Basel, 2019, 9(14): 2880. [31] SCHROYEN M, van HULLE S W H, HOLEMANS S, et al. Laccase enzyme detoxifies hydrolysates and improves biogas production from hemp straw and miscanthus[J]. Bioresource Technology, 2017, 244:597-604. [32] GARCIA N H, BENEDETTI M, BOLZONELLA D. Effects of enzymes addition on biogas production from anaerobic digestion of agricultural biomasses[J]. Waste & Biomass Valorization, 2019, 10(12): 3711-3722. [33] WANG X M, LI Z F, ZHOU X Q, et al. Study on the bio-methane yield and microbial community structure in enzyme enhanced anaerobic co-digestion of cow manure and corn straw[J]. Bioresource Technology, 2016, 219: 150-157. [34] SILVA A F V, SANTOS L A, VALENCA R B, et al. Cellulase production to obtain biogas from passion fruit (Passiflora edulis) peel waste hydrolysate[J]. Journal of Environmental Chemical Engineering, 2019, 7(6): 103510. [35] SCHIMPF U, SCHULZ R. Industrial by-products from white-rot fungi production. Part Ⅱ: application in anaerobic digestion for enzymatic treatment of hay and straw[J]. Process Biochemistry, 2019, 76: 142-154. [36] ODNELL A, RECKTENWALD M, STENSEN K, et al. Activity, life time and effect of hydrolytic enzymes for enhanced biogas production from sludge anaerobic digestion[J]. Water Research, 2016, 103: 462-471. [37] 马一方. 纤维素酶固定化及酶水解对厌氧消化性能影响的研究[D]. 北京: 北京化工大学, 2018. [38] ZHANG L, LOH K C. Synergistic effect of activated carbon and encapsulated trace element additive on methane production from anaerobic digestion of food wastes-Enhanced operation stability and balanced trace nutrition[J]. Bioresource Technology, 2019, 278: 108-115. [39] ZHAO Z S, LI Y, QUAN X, et al. Improving the co-digestion performance of waste activated sludge and wheat straw through ratio optimization and ferroferric oxide supplementation[J]. Bioresource Technology, 2018, 267: 591-598. [40] LU T D, ZHANG J Y, WEI Y S, et al. Effects of ferric oxide on the microbial community and functioning during anaerobic digestion of swine manure[J]. Bioresource Technology, 2019, 287: 121393. [41] CAO X Q, WANG Y B, LIU T. Effects of iron powder addition and thermal hydrolysis on methane production and the archaeal community during the anaerobic digestion of sludge[J]. International Journal of Environmental Research & Public Health, 2022, 19(8): 4470. [42] ZHU X W, BLANCO E, BHATTI M, et al. Impact of metallic nanoparticles on anaerobic digestion: a systematic review[J]. Science of the Total Environment, 2021, 757: 143747. [43] TIAN Y L, ZHANG H Y, ZHENG L, et al. Effect of Zn addition on the cd-containing anaerobic fermentation process: biodegradation and microbial communities[J]. International Journal of Environmental Research & Public Health, 2019, 16(16): 2998. [44] TIAN Y L, ZHANG H Y, ZHENG L, et al. Process analysis of anaerobic fermentation exposure to metal mixtures[J]. International Journal of Environmental Research & Public Health, 2019, 16(14): 2458. [45] CHAN P C, LU Q, de TOLEDO R A, et al. Improved anaerobic co-digestion of food waste and domestic wastewater by copper supplementation-Microbial community change and enhanced effluent quality[J]. Science of the Total Environment, 2019, 670: 337-344. [46] GUO Q, MAJEED S, XU R, et al. Heavy metals interact with the microbial community and affect biogas production in anaerobic digestion: a review[J]. Journal of Environmental Management, 2019, 240: 266-272. [47] 蔡亚凡, 崔宗均, 王小芬. 厌氧消化系统中的微量元素及其生物利用度的研究综述[J]. 中国农业大学学报, 2017, 22(9): 1-11. [48] 胡庆昊, 李秀芬, 陈坚, 等. 厌氧消化过程中镍及其螯合物的生物可利用性研究[J]. 环境科学, 2011, 32(2): 515-519. [49] LU B T, XIA D P, ZHAO S, et al. The influence mechanism of ethylenediaminetetraacetic acid (EDTA)and ferrous iron on the bioavailability of Fe in the process of low rank coal fermentation[J]. Biochemical Engineering Journal, 2022, 185: 108520. [50] ZHANG W L, ZHANG L, LI A M. Enhanced anaerobic digestion of food waste by trace metal elements supplementation and reduced metals dosage by green chelating agent[S, S]-EDDS via improving metals bioavailability[J]. Water Research, 2015, 84: 266-277. [51] ZHANG L, ZHANG J X, LOH K C. Enhanced food waste anaerobic digestion: an encapsulated metal additive for shear stress-based controlled release[J]. Journal of Cleaner Production, 2019, 235: 85-95. [52] DEHHAGHI M, MEISAM T, AGHBASHLO M, et al. A state-of-the-art review on the application of nanomaterials for enhancing biogas production[J]. Journal of Environmental Management, 2019, 251: 109597. [53] ZHOU J, ZHANG H N, LIU J B, et al. Effects of Fe3O4 nanoparticles on anaerobic digestion enzymes and microbial community of sludge[J]. Environmental Technology, 2023,4: 68-81. [54] JADHAV P, KHALID Z B, ZULARISAM A W, et al. The role of iron-based nanoparticles(Fe-NPs) on methanogenesis in anaerobic digestion performance[J]. Environmental Research, 2022, 204: 112043. [55] YU L, KIM D G, AI P, et al. Effects of metal and metal ion on biomethane productivity during anaerobic digestion of dairy manure[J]. Fermentation, 2023, 9(3): 262. [56] MATHERI A N, NTULI F, NGILA J C. Sludge to energy recovery dosed with selected trace metals additives in anaerobic digestion processes[J]. Biomass & Bioenergy, 2021, 144: 105869. [57] 李晓敏. 纳米二氧化钛对污泥厌氧消化产甲烷的影响[J]. 工业安全与环保, 2018, 44(4): 92-95. [58] SINGH P K, KANUNGO S, MISHRA S, et al. Intrinsic insights of nanoparticles via anaerobic digestion for enhanced biogas production[M]. Cham: Springer International Publishing, 2021: 1-26. [59] ABDELWAHAB T A M, FODAH A E M. Utilization of nanoparticles for sustainable biogas production: process stability and effluent quality[J]. SN Applied Sciences, 2022, 4(12): 88-96. [60] PARK J H, KANG H J, PARK K H, et al. Direct interspecies electron transfer via conductive materials: a perspective for anaerobic digestion applications[J]. Bioresource Technology, 2018, 254: 300-311. [61] 龚子珊, 丁国生, 唐安娜. 磁性纳米粒子的制备及其在重金属离子处理中的应用[J]. 分析测试学报, 2014, 33(2): 231-238. [62] CERRILLO M, BURGOS L, RUIZ B, et al. In-situ methane enrichment in continuous anaerobic digestion of pig slurry by zero-valent iron nanoparticles addition under mesophilic and thermophilic conditions[J]. Renewable Energy, 2021, 180: 372-382. [63] LIZAMA A C, FIGUEIRAS C C, GAVIRIA L A, et al. Nanoferrosonication: a novel strategy for intensifying the methanogenic process in sewage sludge[J]. Bioresource Technology, 2019, 276: 318-324. [64] KHALID M J, ZESHAN, WAQAS A, et al. Synergistic effect of alkaline pretreatment and magnetite nanoparticle application on biogas production from rice straw[J]. Bioresource Technology, 2019, 275: 288-296. [65] HASSANEIN A, LANSING S, TIKEKAR R. Impact of metal nanoparticles on biogas production from poultry litter[J]. Bioresource Technology, 2019, 275: 200-206. [66] KHAN S Z, ZAIDI A A, NASEER M N, et al. Nanomaterials for biogas augmentation towards renewable and sustainable energy production: a critical review[J]. Frontiers in Bioengineering & Biotechnology, 2022: 1470. [67] LUNA-DELRISCO M, ORUPLD K, DUBOURGUIER H C. Particle-size effect of CuO and ZnO on biogas and methane production during anaerobic digestion[J]. Journal of Hazardous Materials, 2011, 189(1/2): 603-608. [68] CHEN J L, STEELE T W J, STUCKEY D C. The effect of Fe2NiO4 and Fe4NiO4Zn magnetic nanoparticles on anaerobic digestion activity[J]. Science of the Total Environment, 2018, 642: 276-284. [69] CERRILLO M, BURGOS L, RUIZ B, et al. In-situ methane enrichment in continuous anaerobic digestion of pig slurry by zero-valent iron nanoparticles addition under mesophilic and thermophilic conditions[J]. Renewable Energy, 2021, 180: 372-382. [70] YAZDANI M, EBRAHIMI-NIK M, HEIDARI A, et al. Improvement of biogas production from slaughterhouse wastewater using biosynthesized iron nanoparticles from water treatment sludge[J]. Renewable Energy, 2019, 135: 496-501. [71] AMEN T W M, ELJAMAL O, KHALIL A M E, et al. Methane yield enhancement by the addition of new novel of iron and copper-iron bimetallic nanoparticles[J]. Chemical Engineering & Processing-Process Intensification, 2018, 130: 253-261. [72] BOSCARO M E, MARIN D F C, da SILVA D C, et al. Effect of Fe3O4 nanoparticles on microbial diversity and biogas production in anaerobic digestion of crude glycerol[J]. Biomass & Bioenergy, 2022, 160: 106439. [73] CERVANTES-AVILES P, IDA J, TODA T, et al. Effects and fate of TiO2 nanoparticles in the anaerobic treatment of wastewater and waste sludge[J]. Journal of Environmental Management, 2018, 222: 227-233. [74] TIAN T, QIAO S, LI X, et al. Nano-graphene induced positive effects on methanogenesis in anaerobic digestion[J]. Bioresource Technology, 2017, 224: 41-47. [75] HAO Y, WANG Y Y, MA C X, et al. Carbon nanomaterials induce residue degradation and increase methane production from livestock manure in an anaerobic digestion system[J]. Journal of Cleaner Production, 2019, 240(C): 118257. [76] LIANG Y G, XU L, BAO J, et al. Attapulgite enhances methane production from anaerobic digestion of pig slurry by changing enzyme activities and microbial community[J]. Renewable Energy, 2020, 145: 222-232. [77] ZHANG N, ZHENG H Y, HU X H, et al. Enhanced bio-methane production from ammonium-rich waste using eggshell-and lignite-modified zeolite(ELMZ) as a bio-adsorbent during anaerobic digestion[J]. Process Biochemistry, 2019, 81: 148-155. [78] 焦骄. 白腐菌改性连翘残渣吸附剂的制备、表征以及富集连翘酯苷和连翘脂素的应用研究[D]. 哈尔滨: 东北林业大学, 2013. [79] ZHANG L, ZHANG J X, LOH K C. Activated carbon enhanced anaerobic digestion of food waste-laboratory-scale and pilot-scale operation[J]. Waste Management, 2018, 75: 270-279. [80] XU H F, YUN S N, WANG C, et al. Improving performance and phosphorus content of anaerobic co-digestion of dairy manure with aloe peel waste using vermiculite[J]. Bioresource Technology, 2020, 301(C): 122753. [81] ZHENG H, SHARMA A, MA Q, et al. Development of an oyster shell and lignite modified zeolite(OLMZ) fixed bioreactor coupled with intermittent light stimulation for high efficient ammonium-rich anaerobic digestion process[J]. Chemical Engineering Journal, 2020, 398: 125637. [82] MA J Y, BASHIR M A, PAN J T, et al. Enhancing performance and stability of anaerobic digestion of chicken manure using thermally modified bentonite[J]. Journal of Cleaner Production, 2018, 183: 11-19. [83] ZHANG D J, DUAN N, TIAN H L, et al. Comparing two enhancing methods for improving kitchen waste anaerobic digestion: bentonite addition and autoclaved de-oiling pretreatment[J]. Process Safety & Environmental Protection, 2018, 115: 116-124. [84] SANCHEZ-SANCHEZ C, GONZALEZ-GONZALEZ A, CUADROS-SALCEDO F, et al. Charcoal as a bacteriological adherent for biomethanation of organic wastes[J]. Energy, 2019, 179: 336-342. [85] LOVLEY D R. Happy together: microbial communities that hook up to swap electrons[J]. Isme Journal, 2017, 11(2): 327-336. [86] SUMMERS Z M, FOGARTY H E, LEANG C, et al. Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria[J]. Science, 2010, 330(6009): 1413-1415. [87] KATO S, HASHIMOTO K, WATANABE K. Methanogenesis facilitated by electric syntrophy via (semi) conductive iron-oxide minerals[J]. Environmental Microbiology, 2012, 14(7): 1646-1654. [88] ZHAO Z S, LI Y, YU Q L, et al. Ferroferric oxide triggered possible direct interspecies electron transfer between Syntrophomonas and Methanosaeta to enhance waste activated sludge anaerobic digestion[J]. Bioresource Technology, 2018, 250: 79-85. [89] KAUR M, SAHOO P C, KUMAR M, et al. Effect of metal nanoparticles on microbial community shift and syntrophic metabolism during anaerobic digestion of Azolla microphylla[J]. Journal of Environmental Chemical Engineering, 2021, 9(5): 105841. [90] ZHENG S L, LI Z, ZHANG P, et al. Multi-walled carbon nanotubes accelerate interspecies electron transfer between Geobacter cocultures[J]. Bioelectrochemistry, 2020, 131:107346. [91] ZHAO Z Q, ZHANG Y B, LI Y, et al. Potentially shifting from interspecies hydrogen transfer to direct interspecies electron transfer for syntrophic metabolism to resist acidic impact with conductive carbon cloth[J]. Chemical Engineering Journal, 2017, 313: 10-18. [92] JIA R X, SUN D Z, DANG Y, et al. Carbon cloth enhances treatment of high-strength brewery wastewater in anaerobic dynamic membrane bioreactors[J]. Bioresource Technology, 2020, 298: 122547. [93] SHAO L M, LI S S, CAI J, et al. Ability of biochar to facilitate anaerobic digestion is restricted to stressed surroundings[J]. Journal of Cleaner Production, 2019, 238: 117959. [94] WANG G J, LI Q, GAO X, et al. Synergetic promotion of syntrophic methane production from anaerobic digestion of complex organic wastes by biochar: performance and associated mechanisms[J]. Bioresource Technology, 2018, 250: 812-820. [95] LIU F, ROTARU A E, SHRESTHA P M, et al. Promoting direct interspecies electron transfer with activated carbon[J]. Energy & Environmental Science, 2012, 5(10): 8982-8989. [96] BARUA S, ZAKARIA B S, LIN L, et al. Magnetite doped granular activated carbon as an additive for high-performance anaerobic digestion[J]. Materials Science for Energy Technologies, 2019, 2(3): 377-384. [97] SONG X R, LIU J, JIANG Q, et al. Enhanced electron transfer and methane production from low-strength wastewater using a new granular activated carbon modified with nano-Fe3O4[J]. Chemical Engineering Journal, 2019, 374: 1344-1352. [98] YANG B, XU H, LIU Y B, et al. Role of GAC-MnO2 catalyst for triggering the extracellular electron transfer and boosting CH4 production in syntrophic methanogenesis[J]. Chemical Engineering Journal, 2020, 383(C): 123211. [99] CHEN S, ROTARU A E, SHRESTHA P M, et al. Promoting interspecies electron transfer with biochar[J]. Scientific Reports, 2014, 4(1): 5019. [100] DONG B, XIA Z H, SUN J, et al. The inhibitory impacts of nano-graphene oxide on methane production from waste activated sludge in anaerobic digestion[J]. Science of the Total Environment, 2019, 646: 1376-1384. [101] PONZELLI M, ZAHEDI S, KOCH K, et al. Rapid biological reduction of graphene oxide: impact on methane production and micropollutant transformation[J]. Journal of Environmental Chemical Engineering, 2022, 10(5): 108373. [102] YIN C K, SHEN Y W, YU Y M, et al. In-situ biogas upgrading by a stepwise addition of ash additives: methanogen adaption and CO2 sequestration[J]. Bioresource Technology, 2019, 282: 1-8. [103] SHEN Y W, YIN C K, LI C, et al. Biomethane production from waste activated sludge promoted by sludge incineration bottom ash: the distinctive role of metal cations and inert fractions[J]. Science of the Total Environment, 2022, 819: 153147. [104] NOVAIS R M, GAMEIRO T, CARVALHEIRAS J, et al. High pH buffer capacity biomass fly ash-based geopolymer spheres to boost methane yield in anaerobic digestion[J]. Journal of Cleaner Production, 2018, 178: 258-267. [105] MONTALVO S, CAHN I, BORJA R, et al. Use of solid residue from thermal power plant(fly ash) for enhancing sewage sludge anaerobic digestion: influence of fly ash particle size[J]. Bioresource Technology, 2017, 244: 416-422. [106] LO H M, CHIU H Y, LO S W, et al. Effects of micro-nano and non micro-nano MSWI ashes addition on MSW anaerobic digestion[J]. Bioresource Technology, 2012, 114: 90-94. [107] SAILER G, EICHERMVLLER J, POETSCH J, et al. Optimizing anaerobic digestion of organic fraction of municipal solid waste(OFMSW) by using biomass ashes as additives[J]. Waste Management, 2020, 109: 136-148. [108] LIM J W, CHIAM J A, WANG J Y. Microbial community structure reveals how microaeration improves fermentation during anaerobic co-digestion of brown water and food waste[J]. Bioresource Technology, 2014, 171: 132-138. [109] RUAN D N, ZHOU Z, PANG H J, et al. Enhancing methane production of anaerobic sludge digestion by microaeration: enzyme activity stimulation, semi-continuous reactor validation and microbial community analysis[J]. Bioresource Technology, 2019, 289: 121643. [110] NGUYEN D, WU Z Y, SHRESTHA S, et al. Intermittent micro-aeration: new strategy to control volatile fatty acid accumulation in high organic loading anaerobic digestion[J]. Water Research, 2019, 166: 115080. [111] TUNCAY S, AKCAKAYA M, ICGEN B. Ozonation of sewage sludge prior to anaerobic digestion led to Methanosaeta dominated biomethanation[J]. Fuel, 2022, 313: 122690. [112] ALFARO N, FDZ-POLANCO M, FDZ-POLANCO F, et al. H2 addition through a submerged membrane for in-situ biogas upgrading in the anaerobic digestion of sewage sludge[J]. Bioresource Technology, 2019, 280: 1-8. [113] HAO X D, LIU R B, van LOOSDRECHT M C M, et al. Batch influences of exogenous hydrogen on both acidogenesis and methanogenesis of excess sludge[J]. Chemical Engineering Journal, 2017, 317: 544-550. [114] WANG H, ZHU X Y, YAN Q, et al. Microbial community response to ammonia levels in hydrogen assisted biogas production and upgrading process[J]. Bioresource Technology, 2020, 296(C): 122276. [115] BASSANI I, KOUGIAS P G, ANGELIDAKI I. In-situ biogas upgrading in thermophilic granular UASB reactor: key factors affecting the hydrogen mass transfer rate[J]. Bioresource Technology, 2016, 221: 485-491. [116] GARCIA-ROBLEDO E, OTTOSEN L D M, VOIGT N V, et al. Micro-scale H2-CO2 dynamics in a hydrogenotrophic methanogenic membrane reactor[J]. Frontiers in Microbiology, 2016, 7: 1276. [117] LUO G, JOHANSSON S, BOE K, et al. Simultaneous hydrogen utilization and in situ biogas upgrading in an anaerobic reactor[J]. Biotechnology & Bioengineering, 2012, 109(4): 1088-1094. [118] SARVENOEI F F, ZINATIZADEH A A, ZANGENEH H. A novel technique for waste sludge solubilization using a combined magnetic field and CO2 injection as a pretreatment prior anaerobic digestion[J]. Journal of Cleaner Production, 2018, 172: 2182-2194. [119] OLESZEK M, KRZEMIN'SKA I. Enhancement of biogas production by co-digestion of maize silage with common goldenrod rich in biologically active compounds[J]. Bioresources, 2017, 12(1): 704-714. [120] OLESZEK M, KOZACHOK S. Antioxidant activity of plant extracts and their effect on methane fermentation in bioreactors[J]. International Agrophysics, 2018, 32(3): 395-401. [121] 田云, 王翀, 卢向阳, 等. 植物次生代谢产物在生物质厌氧消化中的应用:CN107299116B[P]. 2021-05-28.
点击查看大图
计量
- 文章访问数: 93
- HTML全文浏览量: 12
- PDF下载量: 7
- 被引次数: 0