OPTIMIZATION MODEL AND MICROSCOPIC MECHANISM ANALYSIS OF A MULTI-SOLID WASTE ACTIVATOR
-
摘要: 采用矿渣粉、粉煤灰、钢渣、石灰、脱硫灰等固废配制尾矿砂充填体激发材料(MSWA)。构建多响应优化模型,分析MSWA原料显著性,开展微观试验探究水化机理。结果表明:多响应优化模型计算误差<2%,可有效反映配比意愿及原料显著性;试验组TS-3意愿值0.812为最优,3 d强度和扩展度分别为0.643 MPa和15.8 cm;3 d强度项中显著因子为水泥熟料(0.629)和钢渣(0.171),扩展度项显著因子为粉煤灰(0.761)。微观试验表明:在矿渣粉和石灰等提供的OH-和SO2-4溶液下,水泥熟料等原料中C3S和C3A迅速水化放热,粉煤灰可促进水化、改善砂浆和易性,且水化产物中C—S—H及AFt等发育良好,会使结构更致密,从而增强充填体的宏观力学性能。Abstract: Solid wastes such as slag, fly ash, steel slag, lime, and desulfurization ash were used to prepare a multi-solid waste activator (MSWA) for tailings filling. We constructed a multi-response optimization model, analyzed the significance of MSWA raw materials, and conducted microscopic experiments to explore the hydration mechanism. The above test results showed that: the error of the calculated value of the desired model of multiple responses was less than 2%, which can effectively reflect the proportioning willingness and the significance of raw materials; the TS-3 intention value of the test group was 0.812, and the 3-day strength and expansion were 0.643 MPa and 15.8 cm; the significant factors in 3-day strength term were cement clinker (0.629) and steel slag (0.171), the significant factor of expansion term was fly ash (0.761). The microscopic test showed that: in the OH- and SO2-4 solution provided by slag, C3S and C3A in cement clinker and other raw materials rapidly hydrated and released heat, and fly ash could promote hydration and improve the workability of mortar. In the product, C—S—H and AFt were well developed, making the structure compact, thus enhancing the macroscopic mechanical properties of the filling body.
-
Key words:
- solid waste materials /
- activator /
- tailings /
- filling slurry /
- response surface /
- hydration heat /
- pore structure
-
[1] 李夕兵,周健,王少锋,等. 深部固体资源开采评述与探索[J]. 中国有色金属学报, 2017, 27(6): 1236-1262. [2] 李新平,汪斌,周桂龙. 我国大陆实测深部地应力分布规律研究[J]. 岩石力学与工程学报, 2012, 31(增刊1): 2875-2880. [3] 刘文博,姚华彦,王静峰,等. 铁尾矿资源化综合利用现状[J]. 材料导报, 2020, 34(增刊1): 268-270. [4] 付自国,乔登攀,郭忠林,等. 超细尾砂胶结充填体强度计算模型及应用[J]. 岩土力学, 2018, 39(9): 3147-3156. [5] 杨志强,高谦,王永前,等. 利用金川水淬镍渣尾砂开发新型充填胶凝剂试验研究[J]. 岩土工程学报, 2014, 36(8): 1498-1506. [6] 卢佳涛,孔丽娟,樊子瑞,等. 铁尾矿砂-地聚物复合材料界面与性能研究[J]. 建筑材料学报,2022,24(3): 1-11. [7] 刘云霄,李晓光,张春苗,等. 铁尾矿砂水泥基灌浆料性能研究[J]. 建筑材料学报, 2019, 22(4): 538-544. [8] 刘继中,赵庆新,张津瑞,等. 碱渣-矿渣粉复合胶凝材料硬化体的微观结构与组成[J]. 建筑材料学报, 2019, 22(6): 872-877. [9] WANG C Q, TAN K F, XU X X, et al. Effect of activators, admixtures and temperature on the early hydration performance of esulfurization ash[J].Construction and Building Materials,2014,70:322-331. [10] LI X G, CHEN Q B, HUANG K Z, et al. Cementitious properties and hydration mechanism of circulating fluidized bed combustion (CFBC)desulfurization ashes[J]. Construction and Building Materials,2012,36:182-187. [11] 刘树龙, 李公成, 刘国磊,等. 石膏-矿渣-石灰复合胶凝体系早期水化作用机理[J]. 有色金属工程, 2021, 11(4):102-109. [12] 张建俊,姚柏聪,王宝强,等. 离子固化剂固化煤矸石粉作用机理研究[J]. 煤炭学报,2022,47(6):2446-2454. [13] 李光辉,张崇岐. 具有复杂约束混料试验的渐近D-最优设计[J]. 应用概率统计, 2017, 33(2): 203-220. [14] 刘永毅,任尊超,袁连旺,等. 响应曲面法优化高强硅酸盐水泥熟料矿物组成的研究[J]. 硅酸盐通报, 2021, 40(4): 1088-1096. [15] 王莉,张颖. 建筑用混凝土中掺入粉煤灰后的滚珠效应与润滑性对比分析[J]. 科技通报, 2017, 33(1): 154-158. [16] 曾晓辉,谢友均,隋同波,等. 电学方法研究水泥水化诱导期[J]. 建筑材料学报, 2009, 12(2): 132-135. [17] 孙睿,王栋民,房中华,等. 钢渣——脱硫灰基全固废胶凝材料及其砂浆界面过渡区的研究[J]. 金属矿山, 2022(1): 41-52. [18] 刘鑫,田轶轩,黄金凤,等. 用于地聚合物的粉煤灰活性评价研究[J]. 材料导报, 2022, 36(2): 102-108. [19] 李文臣,王忠红,郭利杰,等. 尾砂胶结充填体试样早期强度与孔结构关联规律研究[J]. 中国矿业, 2018, 27(10): 143-147. [20] 吴中伟,廉慧珍.水泥基复合材料科学研究中的辩证思维[J].混凝土,2000(4):3-7. [21] WANG L,JIN M M,WU Y H, et al. Hydration,shrinkage, pore structure and fractal dimension of silica fume modified low heat Portlandcement-based materials[J]. Construction and Building Materials,2021,272. [22] 高术杰,倪文,李克庆,等.用水淬二次镍渣制备矿山充填材料及其水化机理[J].硅酸盐学报,2013,41(5):612-619.
点击查看大图
计量
- 文章访问数: 57
- HTML全文浏览量: 7
- PDF下载量: 4
- 被引次数: 0