EFFECT OF HYDROTHERMAL TREATMENT ON DEGREASING PROPERTY AND PHYSICAL AND CHEMICAL PROPERTIES OF FOOD WASTE
-
摘要: 通过改变加热温度(80,100,120,140 ℃)、加热时间(50,70,90,110 min)和离心转速(3000,5000,7000,9000 r/min)等因素,探究了湿热处理对餐厨垃圾脱油性及理化性质的影响。结果表明:湿热处理有利于提高餐厨垃圾的提油率,在加热温度为120 ℃,加热时间为90 min和离心转速9000 r/min的条件下,提油率最高达到95.37%;同时,湿热处理增加了SCOD及VFAs浓度,两者相较空白组最高增加了49.01%和110.27%,促进了有机物水解。另外,通过气质联用仪发现湿热处理促进了长链脂肪酸的生成,其含量与空白组相比增加了77.18%~149.14%,提高了餐厨油脂用作生物柴油原料的潜力;由三维荧光光谱分析得出,湿热处理后溶解性有机物的转化趋势是将溶解性微生物副产物区物质降解为稳定的腐植酸类物质,有利于后续餐厨垃圾的堆肥利用,说明对餐厨垃圾进行适度的湿热处理可有效提高提油率、有机物水解能力与生物可利用效率。Abstract: The mechanism of the effect of hydrothermal treatment conditions on the degreasing properties and physical and chemical properties of food waste was investigated by varying the heating temperature (80, 100, 120, 140 ℃), heating time (50, 70, 90, 110 min) and centrifugal speed (3000, 5000, 7000, 9000 r/min). The results showed that the hydrothermal process was found to improve the oil extraction rate of food waste, which reached a maximum of 95.37% at a heating temperature of 120 ℃, a heating time of 90 minutes and a centrifugal speed of 9000 r/min; meanwhile, the hydrothermal process increased the concentration of SCOD and VFAs by up to 49.01% and 110.27% compared to the blank group, which promoted the hydrolysis of organic matter. In addition, the gas chromatography/mass spectrometry revealed that the hydrothermal process promoted the production of long-chain fatty acids, which increased by 77.18% to 149.14% compared with the blank group, improving the potential of kitchen grease as a biodiesel feedstock; the three-dimensional fluorescence spectroscopy analysis also showed that the transformation trend of dissolved organic matter after hydrothermal treatment was to degrade soluble microbial by-products into stable humic acid-like substances, which was conducive to the subsequent composting of food waste. It indicates that moderate hydrothermal treatment of food waste can effectively improve the oil extraction rate, organic matter hydrolysis capacity and bioavailable efficiency.
-
[1] 石川,李坤,边潇,等. 餐厨垃圾厌氧处理"碳中和"综合效益评价[J].中国环境科学,2023,43(1):436-445. [2] 王巧玲,陈泽智,龚惠娟,等. 含油量对餐厨垃圾厌氧发酵的影响[J].环境工程学报,2012,6(12):4637-4641. [3] 易志刚.餐厨垃圾收运与资源化利用研究进展[J].中国资源综合利用,2021,39(12):116-119,125. [4] 曹书翰,陈立功,刘先杰,等. 餐厨垃圾油水分离技术与方法研究[J].环境卫生工程,2012,20(2):39-42. [5] BARAMPOUTI E M, MAI S, MALAMIS D, et al. Liquid biofuels from the organic fraction of municipal solid waste: a review[J]. Renewable and Sustainable Energy Reviews,2019,110:298-314. [6] 任连海,聂永丰,刘建国,等. 餐厨垃圾湿热处理的影响因素[J].清华大学学报(自然科学版),2006,46(9):1551-1554,1559. [7] 昋永强,樊静波. 餐厨废弃物油脂提取技术的研究[J].河南科技,2013(21):30-31. [8] KARMEE S K, LINARDI D, LEE J, et al. Conversion of lipid from food waste to biodiesel[J]. Waste Management,2015,41:169-173. [9] BARIK S, PAUL K K. Potential reuse of kitchen food waste[J]. Journal of Environmental Chemical Engineering,2017,5(1):196-204. [10] XIE T, ZHANG Z H, SUN M, et al. Effect of hydrothermal pretreatment on the degrease performance and liquid substances transformation of kitchen waste[J]. Environmental Research,2022,205:112537. [11] 宁娜,任连海,王攀,等. 湿热-离心法分离餐厨废油脂[J].环境科学研究,2011,24(12):1430-1434. [12] 任连海,聂永丰,刘建国,等. 湿热处理参数对餐厨垃圾脱水和脱油性能的影响[J].环境科学,2006,27(9):1906-1911. [13] XIE T, ZHANG Z H, ZHANG D, et al. Hydrothermal pretreatment and compound microbial agents promoting high-quality kitchen waste compost: superior humification degree and reduction of odour[J]. Science of the Total Environment,2023,862:160657. [14] 国家环境保护总局. 水和废水监测分析方法[M]. 北京:中国环境科学出版社,2009. [15] GB 5009.6—2016食品安全国家标准 食品中粗脂肪的测定[S]. [16] HJ/T 399— 2007水质 化学需氧量的测定 快速消解分光光度法[S]. [17] 任安东,郑义,孙天姿,等. 沼液回流时间对厨余垃圾高含固厌氧发酵的影响[J].环境工程,2021,39(12):159-165,140. [18] QI G X, MENG W, ZHA J, et al. A novel insight into the influence of thermal pretreatment temperature on the anaerobic digestion performance of floatable oil-recovered food waste: intrinsic transformation of materials and microbial response[J]. Bioresource Technology,2019,293:122021. [19] 任连海,金宜英,刘建国,等. 餐厨垃圾固相油脂液化及分离回收的影响因素[J].清华大学学报(自然科学版),2009,49(3):386-389. [20] 靳俊平,宋玉山,张瑞清,等. 餐厨垃圾油脂分离技术研究及应用[J].环境卫生工程,2014,22(3):36-38. [21] 袁振宏,邢涛,胡克勤,等. 一种基于撞击流原理的餐厨垃圾除油水解装置及其除油水解方法,CN105057315A[P]. 2015. [22] 王宇卓,任连海,聂永丰. 采用正交实验优化湿热法处理厨余垃圾的工艺条件[J].环境污染治理技术与设备,2005,6(10):56-60. [23] 任连海,聂永丰. 餐厨废油高效分离回收工艺研究[J].城市管理与科技,2009,11(4):52-55. [24] 郑苇,刘淑玲,闵海华,等. 餐饮垃圾提油中试实验的加热釜参数选择[J].环境工程学报,2016,10(12):7305-7309. [25] 贾璇,王勇,任连海,等. 湿热预处理对北京市典型餐厨垃圾生物制氢潜力的影响[J].环境工程学报,2017,11(11):6034-6040. [26] 任连海,聂永丰,刘建国,等. 餐厨垃圾湿热处理对其脱出液的影响[J].中国给水排水,2006,22(3):73-76. [27] 赵国鹏,李鸣晓,席北斗,等. 湿热水解处理餐厨垃圾氮素转化规律[J].环境工程学报,2013,7(10):4061-4066. [28] JIN Y Y, LI Y Y, LI J H. Influence of thermal pretreatment on physical and chemical properties of kitchen waste and the efficiency of anaerobic digestion[J]. Journal of Environmental Management,2016,180(9):291-300. [29] 连红民,彭冲,邓舟,等. 深圳市餐厨垃圾湿热水解改性中试研究[J].环境保护科学,2021,47(4):101-105. [30] 朱金龙,魏自民,贾璇,等. 湿热水解预处理对餐厨废弃物液相物质转化的影响[J].环境科学研究,2015,28(3):440-446. [31] FONSECA Y A D, SILVA N C S, CAMARGOS A B, et al. Influence of hydrothermal pretreatment conditions, typology of anaerobic digestion system, and microbial profile in the production of volatile fatty acids from olive mill solid waste[J]. Journal of Environmental Chemical Engineering,2021, 9(2):105055. [32] 程晓格,王琬,邓冠勇,等. 油脂和盐分对餐厨垃圾厌氧消化影响及缓解抑制研究进展[J].应用化工,2023,52(2):534-539. [33] DING L K, CHENG J, QIAO D, et al. Investigating hydrothermal pretreatment of food waste for two-stage fermentative hydrogen and methane co-production[J]. Bioresource Technology,2017,241: 491-499. [34] WANG Y J, WANG S T, YAN X Y, et al. Preparation of liquid bacteria fertilizer with phosphate-solubilizing bacteria cultured by food wastewater and the promotion on the soil fertility and plants biomass[J]. Journal of Cleaner Production,2022,370: 133328. [35] LI Y Y, JIN Y Y, LI J H. Influence of thermal hydrolysis on composition characteristics of fatty acids in kitchen waste[J]. Energy,2016,102(5):139-147. [36] LI Y Y, JIN Y Y, LI J H. Enhanced split-phase resource utilization of kitchen waste by thermal pre-treatment[J]. Energy,2016, 98 (3):155-167. [37] 柴春山,莫保儒,蔡国军,等. 甘肃迭部野生西康扁桃种仁油理化性质及脂肪酸组成分析[J].中国粮油学报,2023,38(6):98-105. [38] 吴清莲. 餐厨垃圾厌氧发酵产挥发性脂肪酸的研究[D].哈尔滨:哈尔滨工业大学,2015. [39] CHEN W, WESTERHOFF P, LEENHEER J A, et al. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter[J]. Environmental Science and Technology,2003,37(24):5701-5710. [40] SUN J, GUO L, LI Q Q, et al. Three-dimensional fluorescence excitation-emission matrix (EEM)spectroscopy with regional integration analysis for assessing waste sludge hydrolysis at different pretreated temperatures[J]. Environmental Science & Pollution Research,2016,23:24061-24067. [41] LI X W, DAI X H, TAKAHASHI J, et al. New insight into chemical changes of dissolved organic matter during anaerobic digestion of dewatered sewage sludge using EEM-PARAFAC and two-dimensional FTIR correlation spectroscopy[J]. Bioresource Technology,2014,159:412-420.
点击查看大图
计量
- 文章访问数: 79
- HTML全文浏览量: 12
- PDF下载量: 3
- 被引次数: 0