EVALUATION OF ENVIRONMENTAL AND ECONOMIC POTENTIAL OF COMPOSITE CEMENT MADE OF MUNICIPAL CONSTRUCTION AND DEMOLITION WASTE
-
摘要: 当前水泥工业作为温室气体排放的重点行业,面临着CO2减排的巨大压力。近年来发展起来的石灰石煅烧黏土水泥是一种极具潜力的低碳水泥。原材料黏土和石灰石与建筑废弃物中的渣土和再生微粉具有类似的组成成分。以生命周期评价(LCA)方法为基本框架,通过建立产品的清单分析,评价了利用渣土和再生微粉为原料制备的建筑废弃物复合水泥在环境和经济方面的潜力。结果表明:建筑废弃物复合水泥的单位CO2排放量相比现有水泥产品可降低24%以上,生产成本可降低至少19%。未来水泥行业纳入碳交易体系,将进一步拉大建筑废弃物复合水泥与现有水泥产品的成本差距。Abstract: The cement industry, as a key industry for greenhouse gas emissions, is under enormous pressure to reduce CO2 emissions. Limestone calcined clay cement developed in recent years is a highly promising low-carbon cement, and its raw materials, clay and limestone has a similar composition to excavated clay and recycled concrete fines in construction and demolition waste. Using the life cycle assessment (LCA) method as a basic framework, this paper evaluated the environmental and economic potential of a composite cement made of the abovementioned construction and demolition waste by creating an inventory analysis of the products. The results showed that the construction and demolition waste composite cement (C3) can reduce CO2 emissions by more than 24%, compared to the existing cement products, and production costs can be cut down by at least 19%. The future inclusion of the cement industry in the carbon emission trading market will further widen the cost gap between C3 and the existing cement products.
-
[1] 胡曙光. 水泥工业在国家"双碳"战略中大有作为[J]. 中国水泥,2022(4):32-33. [2] SCRIVENER K, JOHN V M, GARTNER E M. Eco-efficient cements: potential economically viable solutions for a low-CO2 cement-based materials industry[J]. Cement and Concrete Research, 2018, 114: 2-26. [3] SCRIVENER K, MARTIRENA F, BISHNOI S, et al. Calcined clay limestone cements (LC3)[J]. Cement and Concrete Research, 2018, 114: 49-56. [4] SNCHEZ BERRIEL S, FAVIER A, ROSA D E, et al. Assessing the environmental and economic potential of Limestone Calcined Clay Cement in Cuba[J]. Journal of Cleaner Production, 2016, 124: 361-369. [5] 深圳市住房和建设局. 深圳市建筑废弃物治理专项规划(2020—2035)[EB/OL]. http://zjj.sz.gov.cn/gcjs/tzgg/content/post_8739065.html. 2021-4-30. [6] 广州市城市管理和综合执法局. 广州市建筑废弃物处置设施布局规划(2021—2035年)[EB/OL]. http://cg.gz.gov.cn/zwgk/tzgg/content/post_8891868.html. 2023-3-15. [7] ITO A, WAGAI R. Global distribution of clay-size minerals on land surface for biogeochemical and climatological studies[J]. Scientific data, 2017, 4(1): 1-11. [8] 孙成伟. 花岗岩残积土工程特性及地铁深基坑设计技术研究[D]. 武汉:中国地质大学,2014. [9] 高雪. 基于煅烧余泥渣土的LC3制备技术及其性能研究[D]. 深圳:深圳大学,2022. [10] 姜显峰, 隋晓军, 刘文宇. 石灰石的资源节约与综合利用[J]. 水泥,2018(5):37-38. [11] LU W S, WEBSTER C, PENG Y, et al. Estimating and calibrating the amount of building-related construction and demolition waste in urban China[J]. International Journal of Construction Management, 2017, 17(1): 13-24. [12] 李水源, 何锋, 石军乐. 深圳市建筑废弃物处置现状及对策分析[J]. 建设科技,2022(8):10-13. [13] LU B, SHI C J, ZHANG J K, et al. Effects of carbonated hardened cement paste powder on hydration and microstructure of Portland cement[J]. Construction and Building Materials, 2018, 186: 699-708. [14] ZAJAC M, SKOCEK J, DURDZINSKI P, et al. Effect of carbonated cement paste on composite cement hydration and performance[J]. Cement and Concrete Research, 2020, 134: 106090. [15] 郅晓. "十四五"新型绿色建材研究展望[J]. 新材料产业,2020(6):14-19. [16] 全国环境管理标准化技术委员会. 环境管理 生命周期评价 原则与框架:GB/T 24040—2008[S]. 北京:中国标准出版社,2008:5. [17] 国家发展和改革委员会. 中国水泥生产企业温室气体排放核算方法与报告指南[EB/OL]. https://www.ndrc.gov.cn/xxgk/zcfb/tz/201311/t20131101_963960.html. 2013-11-1. [18] Intergovernmental Panel on Climate Change. Climate Change 2014 Synthesis Report. Contribution of Working Groups Ⅰ, Ⅱ and Ⅲ to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[R/OL]. Geneva: IPCC, 2015. https://www.ipcc.ch/report/ar5/syr/. [19] MASSON-DELMOTTE, V, ZHAI P, PIRANIC A, et al: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change[R/OL]. Cambridge: Cambridge University Press, 2021. https://www.ipcc.ch/report/sixth-assessment-report-working-group-i/. [20] 国家应对气候变化战略研究和国际合作中心. 2011年和2012年中国区域电网平均二氧化碳排放因子[EB/OL]. https://www.ccchina.org.cn/list.aspx?clmId=60&page=7. 2014-9-23. [21] HANEIN T, THIENEL K C, ZUNINO F, et al. Clay calcination technology: state-of-the-art review by the RILEM TC 282-CCL[J]. Materials and Structures, 2022, 55(1): 3. [22] 工业和信息化部, 国家发展和改革委员会, 生态环境部, 住房和城乡建设部. 四部门关于印发建材行业碳达峰实施方案的通知[EB/OL]. http://www.gov.cn/zhengce/zhengceku/2022-11/08/content_5725353.htm. 2022-11-2. [23] 上海环境能源交易所. 2021碳市场工作报告[R/OL]. https://www.cneeex.com/tpfjy/xx/yjybg/tscbg/. 2022-4-29. [24] Schneider M. The cement industry on the way to a low-carbon future[J]. Cement and Concrete Research, 2019, 124: 105792. [25] 安徽海螺水泥股份有限公司. 2021年度报告[EB/OL]. https://www.conch.cn/yjbg/list_lcid_4.html. 2022-3-25. [26] 安徽海螺水泥股份有限公司. 2021企业社会责任报告暨环境、社会及管治报告[EB/OL]. https://www.conch.cn/shzr/list.html. 2022-3-25. [27] 北京金隅集团股份有限公司. 2021年年度报告[EB/OL]. https://bbmg-umb.azurewebsites.net/cn/announcements-and-circulars/. 2022-3-25. [28] 北京金隅集团股份有限公司. 2021年环境、社会及管治报告[EB/OL]. https://bbmg-umb.azurewebsites.net/cn/announcements-and-circulars/. 2022-3-25. [29] 华润水泥控股有限公司. 2021年报[EB/OL]. https://www.crcement.com/FinancialResults/index.html?flag=2. [30] 华新水泥股份有限公司. 2021年年度报告[EB/OL]. https://www.huaxincem.com/view/5245.html. 2022-3-30. [31] 华新水泥股份有限公司. 2021环境、社会及管治报告[EB/OL]. https://www.huaxincem.com/view/5282.html. 2022-6-1. [32] 夏凌风,郭珍妮,邱林,等.水泥行业碳减排途径及贡献度探讨[J]. 中国水泥, 2022, 246(11): 14-19. [33] 谭泽华,梁明,柯华成. 高岭土高浓度选矿工艺:200710029482.3[P]. 2008-1-9. [34] XIAN X P, ZHANG D, SHAO Y X. Flue gas carbonation curing of cement paste and concrete at ambient pressure[J]. Journal of Cleaner Production, 2021, 313: 127943. [35] 住房和城乡建设部. 建筑碳排放计算标准:GB/T 51366—2019[S]. 北京:中国建筑工业出版社,2019:4. [36] 中国天瑞集团水泥有限公司. 2021环境、社会及管治报告[EB/OL]. http://www.trcement.com/#/investor/1589?type=circular. 2022-4-26. [37] 杨英楚. 广州市花都区建筑渣土治理的利益协调机制研究[D]. 广州:华南理工大学, 2021. [38] 广东省生态环境厅. 广东省2022年度碳排放配额分配方案[EB/OL]. http://gdee.gd.gov.cn/shbtwj/content/post_4058200.html.2022-12-4.
点击查看大图
计量
- 文章访问数: 57
- HTML全文浏览量: 8
- PDF下载量: 4
- 被引次数: 0