EXPERIMENTAL STUDY ON THERMAL REMEDIATION OF PETROLEUM HYDROCARBON CONTAMINATED SOILS
-
摘要: 现有关于石油烃污染土壤热脱附修复的室内试验研究存在忽视土体天然结构、温控效果欠佳、较少考虑加热井和抽提井设计等问题,无法为原位热脱附修复技术设计提供很好的支撑。为克服以上难题,开发了一套新型的室内热脱附修复小尺寸模型试验装置,用于石油烃污染土热脱附修复试验。结果表明:污染土壤热脱附修复效果受热脱附温度和加热持续时间影响显著;不同位置处土壤的污染物去除率表现出较大的差异,距离加热管、抽提管和土层顶面越近,污染土壤修复效果越好;污染土壤试样顶部有无覆盖系统对其修复效果影响不大。研究还发现,热脱附修复后污染土壤中的颗粒组分、pH值和氮磷钾含量变化不大,而有机质含量和含水率则显著降低。开发的室内热脱附修复装置能够较好地服务于石油烃污染土壤原位热脱附修复技术,研究结果可为当前污染场地原位热脱附修复技术设计和场地环境评估提供参数依据。Abstract: The current research regarding the remediation of total petroleum hydrocarbon (TPH) contaminated soils largely ignores the effect of soil structures, and cannot provide either good temperature control or reasonable design of heating and extraction tubes. To address this issue, a new bench-scale thermal remediation apparatus has been developed to conduct thermal remediation tests of TPH-contaminated soils. The test results showed that the remediation effect of TPH(C6 to C9) was significantly affected by the heating temperature and heating time. The thermal remediation effect of contaminated soils showed large divergence at different locations within the insulation tank, and a good remediation effect is usually accomplished by shorter distances from the heating tube, extraction tube as well as soil surface; the influence from top cover system of the soil surface was however limited. It was also found that the particle components, pH value, contents of nitrogen, phosphorus and potassium of the contaminated soils showed small changes after thermal remediation, and the content of organic matter and moisture content had been significantly reduced. The novel apparatus developed in this study is expected to contribute to the improvement of in-situ thermal remediation technology of TPH-contaminated soils. The findings are supposed to be useful for the selection of operating parameters of thermal remediation technology in the prescribed field as well as environmental assessment.
-
[1] 葛锋, 张转霞, 扶恒, 等. 我国有机污染场地现状分析及展望[J]. 土壤, 2021, 53(6): 1132-1141. [2] 张学良, 李群, 周艳, 等. 某退役溶剂厂有机物污染场地燃气热脱附原位修复效果试验[J]. 环境科学学报, 2018, 38(7): 2868-2875. [3] 詹明秀,刘立朋,顾海林,等. 原位热修复过程中土壤内热质传递研究现状与展望[J]. 环境工程学报, 2022, 16(4): 1272-1283. [4] 陈俊华, 李绍华, 刘晋恺, 等. 燃气热脱附技术土壤修复效果及影响因素[J]. 环境工程学报, 2022, 16(5): 1610-1619. [5] 谢炳坤,姜祖明,曾俊,等. 多环芳烃类污染场地应用原位电热脱附技术的能效分析[J]. 环境工程, 2021, 39(8): 173-178, 187. [6] 籍龙杰, 刘鹏, 韦云霄, 等. 单根加热管原位加热土壤过程中温度变化规律[J]. 环境工程, 2019, 37(2): 165-169. [7] 高国龙,蒋建国,李梦露. 有机物污染土壤热脱附技术研究与应用[J]. 环境工程, 2012,30(1): 128-131. [8] 李晓杰, 张文文, 马传博, 等. 热强化气相抽提修复东北地区苯污染土壤研究[J]. 环境工程, 2022, 40(4): 134-139, 187. [9] JULIA E V, KYRIACOS Z, CAROLINE A M, et al. Pyrolytic treatment and fertility enhancement of soils contaminated with heavy hydrocarbons[J]. Environmental Science & Technology, 2016, 50(5): 2498-2506. [10] ZIVDAR Z, HEIDARZADEH N, ASADOLLAHFARDI G. Remediation of diesel-contaminated soil by low-temperature thermal desorption[J]. International Journal of Environmental Science & Technology, 2019, 16(10): 6113-6124. [11] WENG M C, LIN C L, LEE C H. Effect of heat-treatment remediation on the mechanical behavior of oil-contaminated soil[J]. Applied Sciences, 2020, 10(9): 3174. [12] REN J Q, SONG X, DING D. Sustainable remediation of diesel-contaminated soil by low temperature thermal treatment: improved energy efficiency and soil reusability[J]. Chemosphere, 2020, 241: 124952. [13] YONG M Y, SOYOUNG P, CLYDE M, et al. Changes in ecological properties of petroleum oil-contaminated Soil after low-temperature thermal desorption treatment[J]. Water Air & Soil Pollution, 2016, 227(4): 1-18. [14] 陈星, 宋昕, 吕正勇. PAHs污染土壤的热修复可行性[J]. 环境工程学报, 2018, 12(10): 2833-2844. [15] O’BRIEN P L, DESUTTER T M, CASEY F X M, et al. Thermal remediation alters soil properties: a review[J]. Journal of Environmental Management, 2018, 206: 826-835. [16] 蒋村, 孟宪荣, 施维林, 等. 氯苯污染土壤低温原位热脱附修复[J]. 环境工程学报, 2019, 13(7): 1720-1726. [17] 郭昊. 热强化气相抽提去除土壤中三氯乙烯的试验研究[D]. 郑州: 华北水利水电大学, 2020. [18] 孙袭明. 有机污染土壤热脱附技术的影响因素研究及模拟系统开发[D]. 天津: 天津大学, 2018. [19] DAVID B, CLARA M. Plant ash and heat intensity effects on chemical and physical properties of two contrasting soils[J]. Arid Soil Research and Rehabilitation, 2003, 17(1): 23-41. [20] 内部交流, 天津农药股份有限公司污染场地热脱附修复设计, 北京建工环境修复股份有限公司, 2021. [21] 水质挥发性石油烃的测定 吹扫捕集 气相色谱法(C6—C9)(征求意见稿)[S]. 上海: 环境监测中心, 2017. [22] DALLAS W G, DALE W J, ROBERT R B, et al. Factors affecting mineral nitrogen transformations by soil heating: a laboratory-simulated fire study[J]. Soil Science, 2008, 173(6): 387-400. [23] 黄晓露, 戴勤, 梁文汇, 等. 桂西北板栗园区土壤养分含量分析及评价[J]. 西南农业学报, 2022, 35(12): 2827-2835. [24] 王小雨, 冯江, 王静. 莫莫格湿地油田开采区土壤石油烃污染及对土壤性质的影响[J]. 环境科学, 2009, 30(8): 2394-2401. [25] 廉景燕, 哈莹, 黄磊, 等. 石油污染土壤物化修复前后生物毒性效应[J]. 环境科学, 2011, 32(3): 870-874.
点击查看大图
计量
- 文章访问数: 71
- HTML全文浏览量: 8
- PDF下载量: 5
- 被引次数: 0