CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊
JST China 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

MIL-100(Fe,Mn)衍生物活化过氧化氢降解水中尼泊金丁酯

苑宇杰 林涛

苑宇杰, 林涛. MIL-100(Fe,Mn)衍生物活化过氧化氢降解水中尼泊金丁酯[J]. 环境工程, 2024, 42(5): 35-41. doi: 10.13205/j.hjgc.202405005
引用本文: 苑宇杰, 林涛. MIL-100(Fe,Mn)衍生物活化过氧化氢降解水中尼泊金丁酯[J]. 环境工程, 2024, 42(5): 35-41. doi: 10.13205/j.hjgc.202405005
YUAN Yujie, LIN Tao. DEGRADATION OF BUTYLPARABEN IN WATER BY ACTIVATION OF HYDROGEN PEROXIDE BY MIL-100(Fe,Mn) DERIVATIVES[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(5): 35-41. doi: 10.13205/j.hjgc.202405005
Citation: YUAN Yujie, LIN Tao. DEGRADATION OF BUTYLPARABEN IN WATER BY ACTIVATION OF HYDROGEN PEROXIDE BY MIL-100(Fe,Mn) DERIVATIVES[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(5): 35-41. doi: 10.13205/j.hjgc.202405005

MIL-100(Fe,Mn)衍生物活化过氧化氢降解水中尼泊金丁酯

doi: 10.13205/j.hjgc.202405005
基金项目: 

国家重点研发计划“定向去除抗生素等的氧化-生物协同技术研发与示范”(2022YFC3203702)

详细信息
    作者简介:

    苑宇杰(2002-),男,本科生,主要研究方向为高级氧化技术在水处理中的应用。1958312212@qq.com

    通讯作者:

    林涛(1978-),男,教授,博士,主要从事饮用水安全保障和突发水污染应急等方面的研究与应用工作。hit_lintao@163.com

DEGRADATION OF BUTYLPARABEN IN WATER BY ACTIVATION OF HYDROGEN PEROXIDE BY MIL-100(Fe,Mn) DERIVATIVES

  • 摘要: 为实现水中典型的药物类新污染物尼泊金丁酯(BPB)的氧化降解,通过构建过渡金属的活性位点以及调控材料的结构特性,利用水热法及煅烧法合成了MIL-100(Fe,Mn)衍生物催化剂用于催化H2O2降解水中BPB。详细探究了催化剂投加量和水环境化学条件(如初始pH、温度、共存离子等)对MIL-100(Fe,Mn)衍生物催化体系降解水中BPB的影响,同时对反应体系中活性物种进行鉴定分析。结果表明:MIL-100(Fe,Mn)衍生物催化体系在较宽pH范围和不同溶液温度范围(10 ℃~40 ℃)内均表现出良好的催化性能,且适当提高催化剂投加量有助于活化H2O2氧化水中BPB,优选pH=7.0、298 K(25 ℃)反应条件下投加0.2 g/L催化剂,然后加入1 mmol/L的H2O2可实现反应15 min内氧化降解96%的BPB。另外,反应体系中引入HCO3-对BPB降解起明显的抑制作用,但不同浓度的NO3-和Cl-对水中BPB降解效果影响不大。MIL-100(Fe,Mn)衍生物催化剂通过Fe、Mn金属离子之间的协同作用,可促进H2O2分解产生·OH,进而快速氧化水中BPB。
  • [1] ELLIS J B. Pharmaceutical and personal care products (PPCPs) in urban receiving waters[J]. Environ Pollut, 2006,144(1): 184-189.
    [2] VANDERFORD B, SNYDER S. Analysis of pharmaceuticals in water by isotope dilution liquid chromatography/tandem mass spectrometry[J]. Environmental Science & Technology, 2006,40(23): 7312-7320.
    [3] ZHOU J L, ZHANG Z L, BANKS E, et al. Pharmaceutical residues in wastewater treatment works effluents and their impact on receiving river water[J]. Journal of Hazardous Materials, 2009,166(2): 655-661.
    [4] BOUKARIM C, JAOUDE S A, BAHNAM R, et al. Preservatives in liquid pharmaceutical preparations[J]. Drug Testing and Analysis, 2009, 1(3):146-148.
    [5] HASAN Z, JHUNG S H. Removal of hazardous organics from water using metal-organic frameworks (MOFs): plausible mechanisms for selective adsorptions[J]. Journal of Hazardous Materials, 2015, 283:329-339.
    [6] OISHI S S. Effects of butylparaben on the male reproductive system in rats[J]. Toxicology & Industrial Health, 2001, 17(1):31-39.
    [7] VEGA D, AGÜÍ L, GONZÁLEZ-CORTÉS A, et al. Electrochemical detection of phenolic estrogenic compounds at carbon nanotube-modified electrodes[J]. Talanta, 2007,71(3): 1031-1038.
    [8] COSTA R C C, LELIS M F F, OLIVEIRA L C A, et al. Remarkable effect of Co and Mn on the activity of Fe3-xMxO4 promoted oxidation of organic contaminants in aqueous medium with H2O2[J]. Catalysis Communications, 2003, 4(10):525-529.
    [9] LATA R, KAUSHAL J, SRIVASTAV A L, et al. A critical review on recent developments in MOF adsorbents for the elimination of toxic heavy metals from aqueous solutions[J]. Environmental Science and Pollution Research International, 2020,27(36):44771-44796.
    [10] HUANG S H, YANG K L, LIU X F, et al. MIL-100(Fe)-catalyzed efficient conversion of hexoses to lactic acid[J]. RSC Advances, 2017, 7(10):5621-5627.
    [11] PRIETO O, DEL ARCO M, RIVES V. Structural evolution upon heating of sol-gel prepared birnessites[J]. Thermochimica Acta, 2003,401(2): 95-109.
    [12] ZHANG Z, AI H, FU M L, et al. Oxygen vacancies enhancing performance of Mg-Co-Ce oxide composite for the selective catalytic ozonation of ammonia in water[J]. Journal of Hazardous Materials, 2022,436: 129000.
    [13] KEEN O S, BAILK S, LINDEN K G, et al. Enhanced biodegradation of carbamazepine after UV/H2O2 advanced oxidation[J]. Environmental Science & Technology, 2012, 46(11):6222-6227.
    [14] BOSSMANN S H, OLIVEROS E, GÖB S, et al. New Evidence against hydroxyl radicals as reactive intermediates in the thermal and photochemically enhanced fenton reactions[J]. Journal of Physical Chemistry A, 1998,102(28): 5542-5550.
    [15] SZPYRKOWICZ L, JUZZOLINO C, KAUL S N. A Comparative study on oxidation of disperse dyes by electrochemical process, ozone, hypochlorite and fenton reagent[J]. Water Research, 2001,35(9): 2129-2136.
    [16] CHEN Y Y, MA Y L, YANG J, et al. Aqueous tetracycline degradation by H2O2 alone: removal and transformation pathway[J]. Chemical Engineering Journal, 2017, 307:15-23.
    [17] ZHANG W B, AN T C, CUI M C, et al. Effects of anions on the photocatalytic and photoelectrocatalytic degradation of reactive dye in a packed-bed reactor[J]. Journal of Chemical Technology & Biotechnology Biotechnology, 2005, 80(2):223-229.
    [18] SÖRENSEN M, FRIMMEL F H. Photochemical degradation of hydrophilic xenobiotics in the UV/H2O2-process. influence of bicarbonate on the degradation rate of EDTA, 2-Amino-1-naphthalenesulfonate, Diphenyl-4-sulfonate, and 4,4'-Diaminostilbene-2,2'-disulfonate[J]. Acta Hydrochimica et Hydrobiologica, 1996, 24: 185-188.
    [19] PENG H H, YANG J E, FU M L, et al. Nanocrystalline ferrihydrite activated peroxymonosulfate for butyl-4-hydroxybenzoate oxidation: performance and mechanism[J]. Chemosphere, 2020, 242, 125140.
    [20] 庄珍珍. 高级氧化技术对水中磺胺类抗生素的去除研究[D]. 赣州:江西理工大学,2015.
    [21] FERRERO F. Oxidative degradation of dyes and surfactant in the Fenton and photo-Fenton treatment of dyehouse effluents[J]. Coloration Technology, 2000,116(5): 148-153.
    [22] GALLARD H, LAAT J D. Kinetic modelling of Fe(Ⅲ)/H2O2 oxidation reactions in dilute aqueous solution using atrazine as a model organic compound[J]. Water Research, 2000,34(12): 3107-3116.
  • 加载中
计量
  • 文章访问数:  22
  • HTML全文浏览量:  3
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-24
  • 网络出版日期:  2024-07-11

目录

    /

    返回文章
    返回