DEGRADATION OF BUTYLPARABEN IN WATER BY ACTIVATION OF HYDROGEN PEROXIDE BY MIL-100(Fe,Mn) DERIVATIVES
-
摘要: 为实现水中典型的药物类新污染物尼泊金丁酯(BPB)的氧化降解,通过构建过渡金属的活性位点以及调控材料的结构特性,利用水热法及煅烧法合成了MIL-100(Fe,Mn)衍生物催化剂用于催化H2O2降解水中BPB。详细探究了催化剂投加量和水环境化学条件(如初始pH、温度、共存离子等)对MIL-100(Fe,Mn)衍生物催化体系降解水中BPB的影响,同时对反应体系中活性物种进行鉴定分析。结果表明:MIL-100(Fe,Mn)衍生物催化体系在较宽pH范围和不同溶液温度范围(10 ℃~40 ℃)内均表现出良好的催化性能,且适当提高催化剂投加量有助于活化H2O2氧化水中BPB,优选pH=7.0、298 K(25 ℃)反应条件下投加0.2 g/L催化剂,然后加入1 mmol/L的H2O2可实现反应15 min内氧化降解96%的BPB。另外,反应体系中引入HCO3-对BPB降解起明显的抑制作用,但不同浓度的NO3-和Cl-对水中BPB降解效果影响不大。MIL-100(Fe,Mn)衍生物催化剂通过Fe、Mn金属离子之间的协同作用,可促进H2O2分解产生·OH,进而快速氧化水中BPB。Abstract: The MIL-100 (Fe, Mn) derivative catalyst, with new established active sites and regulated structure, was synthesized by hydrothermal method and calcination method to activate H2O2 for the removal of the typical new pharmaceutical pollutants, butylparaben (BPB) in water. The effects of catalyst dosage and water environmental chemical conditions (such as initial pH, reaction temperature, co-existing ions, etc.) on the degradation of BPB in water by MIL-100 (Fe, Mn) derivatives were detailly investigated, and the active species in the reaction system were also analyzed. The results showed that the MIL-100 (Fe, Mn) derivative catalytic system showed good catalytic performance in a wide range of pH and solution temperature, and increasing the catalyst dosage was conducive to the activation of H2O2 oxidation of BPB in water. Preferably, 96% of BPB could be oxidized within 15 min by the MIL-100 (Fe, Mn) derivative catalytic system under the conditions of pH=7.0, 298 K (25 ℃), 0.2 g/L catalyst and 1 mmol/L H2O2. In addition, the introduction of HCO3- in the reaction system significantly inhibited the degradation of BPB, but different concentration of NO3- and Cl- had little effect on the degradation of BPB in water. The synergistic interaction between Fe/Mn metal ions on the surface of MIL-100 (Fe, Mn) derivative catalyst could promote the decomposition of H2O2 to generate ·OH, and then rapidly oxidize BPB in water.
-
Key words:
- MOFs /
- heterogeneous catalytic oxidation /
- H2O2 /
- butylparaben (BPB) /
- metal oxide
-
[1] ELLIS J B. Pharmaceutical and personal care products (PPCPs) in urban receiving waters[J]. Environ Pollut, 2006,144(1): 184-189. [2] VANDERFORD B, SNYDER S. Analysis of pharmaceuticals in water by isotope dilution liquid chromatography/tandem mass spectrometry[J]. Environmental Science & Technology, 2006,40(23): 7312-7320. [3] ZHOU J L, ZHANG Z L, BANKS E, et al. Pharmaceutical residues in wastewater treatment works effluents and their impact on receiving river water[J]. Journal of Hazardous Materials, 2009,166(2): 655-661. [4] BOUKARIM C, JAOUDE S A, BAHNAM R, et al. Preservatives in liquid pharmaceutical preparations[J]. Drug Testing and Analysis, 2009, 1(3):146-148. [5] HASAN Z, JHUNG S H. Removal of hazardous organics from water using metal-organic frameworks (MOFs): plausible mechanisms for selective adsorptions[J]. Journal of Hazardous Materials, 2015, 283:329-339. [6] OISHI S S. Effects of butylparaben on the male reproductive system in rats[J]. Toxicology & Industrial Health, 2001, 17(1):31-39. [7] VEGA D, AGÜÍ L, GONZÁLEZ-CORTÉS A, et al. Electrochemical detection of phenolic estrogenic compounds at carbon nanotube-modified electrodes[J]. Talanta, 2007,71(3): 1031-1038. [8] COSTA R C C, LELIS M F F, OLIVEIRA L C A, et al. Remarkable effect of Co and Mn on the activity of Fe3-xMxO4 promoted oxidation of organic contaminants in aqueous medium with H2O2[J]. Catalysis Communications, 2003, 4(10):525-529. [9] LATA R, KAUSHAL J, SRIVASTAV A L, et al. A critical review on recent developments in MOF adsorbents for the elimination of toxic heavy metals from aqueous solutions[J]. Environmental Science and Pollution Research International, 2020,27(36):44771-44796. [10] HUANG S H, YANG K L, LIU X F, et al. MIL-100(Fe)-catalyzed efficient conversion of hexoses to lactic acid[J]. RSC Advances, 2017, 7(10):5621-5627. [11] PRIETO O, DEL ARCO M, RIVES V. Structural evolution upon heating of sol-gel prepared birnessites[J]. Thermochimica Acta, 2003,401(2): 95-109. [12] ZHANG Z, AI H, FU M L, et al. Oxygen vacancies enhancing performance of Mg-Co-Ce oxide composite for the selective catalytic ozonation of ammonia in water[J]. Journal of Hazardous Materials, 2022,436: 129000. [13] KEEN O S, BAILK S, LINDEN K G, et al. Enhanced biodegradation of carbamazepine after UV/H2O2 advanced oxidation[J]. Environmental Science & Technology, 2012, 46(11):6222-6227. [14] BOSSMANN S H, OLIVEROS E, GÖB S, et al. New Evidence against hydroxyl radicals as reactive intermediates in the thermal and photochemically enhanced fenton reactions[J]. Journal of Physical Chemistry A, 1998,102(28): 5542-5550. [15] SZPYRKOWICZ L, JUZZOLINO C, KAUL S N. A Comparative study on oxidation of disperse dyes by electrochemical process, ozone, hypochlorite and fenton reagent[J]. Water Research, 2001,35(9): 2129-2136. [16] CHEN Y Y, MA Y L, YANG J, et al. Aqueous tetracycline degradation by H2O2 alone: removal and transformation pathway[J]. Chemical Engineering Journal, 2017, 307:15-23. [17] ZHANG W B, AN T C, CUI M C, et al. Effects of anions on the photocatalytic and photoelectrocatalytic degradation of reactive dye in a packed-bed reactor[J]. Journal of Chemical Technology & Biotechnology Biotechnology, 2005, 80(2):223-229. [18] SÖRENSEN M, FRIMMEL F H. Photochemical degradation of hydrophilic xenobiotics in the UV/H2O2-process. influence of bicarbonate on the degradation rate of EDTA, 2-Amino-1-naphthalenesulfonate, Diphenyl-4-sulfonate, and 4,4'-Diaminostilbene-2,2'-disulfonate[J]. Acta Hydrochimica et Hydrobiologica, 1996, 24: 185-188. [19] PENG H H, YANG J E, FU M L, et al. Nanocrystalline ferrihydrite activated peroxymonosulfate for butyl-4-hydroxybenzoate oxidation: performance and mechanism[J]. Chemosphere, 2020, 242, 125140. [20] 庄珍珍. 高级氧化技术对水中磺胺类抗生素的去除研究[D]. 赣州:江西理工大学,2015. [21] FERRERO F. Oxidative degradation of dyes and surfactant in the Fenton and photo-Fenton treatment of dyehouse effluents[J]. Coloration Technology, 2000,116(5): 148-153. [22] GALLARD H, LAAT J D. Kinetic modelling of Fe(Ⅲ)/H2O2 oxidation reactions in dilute aqueous solution using atrazine as a model organic compound[J]. Water Research, 2000,34(12): 3107-3116.
点击查看大图
计量
- 文章访问数: 52
- HTML全文浏览量: 6
- PDF下载量: 4
- 被引次数: 0