中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

菌藻共生系统实现短程硝化工艺的藻供氧条件和影响因素分析

许华一 李姗蔚 韦静 周向同 吴智仁

许华一, 李姗蔚, 韦静, 周向同, 吴智仁. 菌藻共生系统实现短程硝化工艺的藻供氧条件和影响因素分析[J]. 环境工程, 2024, 42(5): 42-52. doi: 10.13205/j.hjgc.202405006
引用本文: 许华一, 李姗蔚, 韦静, 周向同, 吴智仁. 菌藻共生系统实现短程硝化工艺的藻供氧条件和影响因素分析[J]. 环境工程, 2024, 42(5): 42-52. doi: 10.13205/j.hjgc.202405006
XU Huayi, LI Shanwei, WEI Jing, ZHOU Xiangtong, WU Zhiren. STUDY ON OXYGEN SUPPLY CONDITION AND INFLUENCE OF ALGAL IN PARTIAL NITRIFICATION PROCESS IN A BACTERIA AND ALGAE SYMBIOTIC SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(5): 42-52. doi: 10.13205/j.hjgc.202405006
Citation: XU Huayi, LI Shanwei, WEI Jing, ZHOU Xiangtong, WU Zhiren. STUDY ON OXYGEN SUPPLY CONDITION AND INFLUENCE OF ALGAL IN PARTIAL NITRIFICATION PROCESS IN A BACTERIA AND ALGAE SYMBIOTIC SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(5): 42-52. doi: 10.13205/j.hjgc.202405006

菌藻共生系统实现短程硝化工艺的藻供氧条件和影响因素分析

doi: 10.13205/j.hjgc.202405006
基金项目: 

国家自然科学基金青年科学基金项目“电诱导快速定向驯化氨氧化污泥及强化脱氮机理”(52000089)

详细信息
    作者简介:

    许华一(1998-),男,硕士研究生,主要研究方向为短程硝化-厌氧氨氧化工艺。1210597798@qq.com

    通讯作者:

    李姗蔚(1987-),女,助理研究员,主要研究方向为生物脱氮理论与技术。lsw3@ujs.edu.cn

STUDY ON OXYGEN SUPPLY CONDITION AND INFLUENCE OF ALGAL IN PARTIAL NITRIFICATION PROCESS IN A BACTERIA AND ALGAE SYMBIOTIC SYSTEM

  • 摘要: 通过调节光照强度和藻浓度来实现最佳的短程硝化工艺,探究了光照强度和藻浓度对反应器出水水质、溶解氧(DO)浓度、氨氧化菌(AOB)数量和酶活、藻光合作用色素含量以及微生物形貌及群落结构的影响。水质测定结果表明:在16000 Lux光照强度和添加1170 mL小球藻培养液(OD680=1.6±0.4)的条件下,亚硝酸盐积累率达到88.88%,实现了良好的短程硝化效果。DO监测结果表明:反应器中ρ(DO)一直在0.1~0.11 mg/L,并且藻浓度是反应器中DO浓度的主要影响因素。AOB菌的氨单加氧酶(ammonia monooxygenase,AMO)活性和amoA基因拷贝数,以及藻的3种光合作用色素含量在反应器运行后期逐渐趋于稳定,说明反应器内AOB菌和藻逐渐形成了稳定的共生系统。高通量测序结果显示,AOB菌属Nitrosomonas和小球藻属Chlorella是主要的功能微生物,并且扫描电子显微镜观察到2种功能微生物的形貌。通过探究不同藻供氧条件对短程硝化工艺中功能微生物活性、数量和微生物群落结构的影响,为该工艺启动和稳定运行的藻供氧调控提供了理论参考。
  • [1] 张馨文, 王荣震, 冯成业, 等. 生活污水短程硝化脱氮工艺的快速启动及稳定性研究[J]. 环境工程, 2022, 40(10): 9-14.
    [2] 韩亚琳, 王福浩, 王群, 等. HSBBR运行模式对同步短程硝化反硝化脱氮及微生物群落特征的影响[J]. 环境工程, 2021, 39(1): 51-57

    ,17.
    [3] RAHIMI S, MODIN O, MIJAKOVIC I. Technologies for biological removal and recovery of nitrogen from wastewater[J]. Biotechnology Advances, 2020, 43: 107570.
    [4] GE S, WANG S, YANG X, et al. Detection of nitrifiers and evaluation of partial nitrification for wastewater treatment: a review[J]. Chemosphere, 2015, 140: 85-98.
    [5] PAREDES D, KUSCHK P, MBWETTE T S A, et al. New aspects of microbial nitrogen transformations in the context of wastewater treatment: a review[J]. Engineering in Life Sciences, 2007, 7(1): 13-25.
    [6] ANTHONISEN A C, LOEHR R, PRAKASAM T B S, et al. Inhibition of nitrification by ammonia and nitrous-acid[J]. Journal-Water Pollution Control Federation, 1976, 48(5): 835-852.
    [7] 冯思然, 朱顺妮, 王忠铭. 微藻污水处理研究进展[J]. 环境工程, 2019, 37(4): 57-62

    ,56.
    [8] CESAR BELTRAN-ROCHA J, DAGMAR BARCELO-QUINTAL I, GARCIA-MARTINEZ M, et al. Polishing of municipal secondary effluent using native microalgae consortia[J]. Water Science and Technology, 2017, 75(7): 1693-1701.
    [9] 郑耀通, 吴小平, 高树芳. 固定化菌藻系统去除氨氮影响[J]. 江西农业大学学报, 2003(1): 99-102.
    [10] 宋彧. 启动藻强化短程硝化-厌氧氨氧化反应器处理模拟腈纶废水的工艺研究[D].大连:辽宁师范大学, 2019.
    [11] 李竺芯, 樊迪, 那娜, 等. 光照条件对菌藻共生系统单级脱氮的影响研究[J]. 环境科学与技术, 2019, 42(10): 78-82.
    [12] 巩有奎, 李永波, 苗志加. 不同进水方式下短程反硝化过程中N2O产量[J]. 环境工程, 2018, 36(10): 59-63.
    [13] LICHTENTHALER H K. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes[M]//Methods in Enzymology. Academic Press, 1987: 350-382.
    [14] 张峰峰, 周可, 谢凤行, 等. Pseudomonas alcaliphila AD-28的脱氮性能及其关键酶活性[J]. 微生物学通报, 2019, 46(9): 2166-2174.
    [15] 徐晓庆, 苏命, 朱宜平, 等. 基于荧光定量PCR技术构建水源地典型致嗅物质2-甲基异莰醇的评估方法及其应用[J]. 环境工程学报, 2020, 14(11): 3208-3215.
    [16] ZHANG M, WANG S, JI B, et al. Towards mainstream deammonification of municipal wastewater: partial nitrification-anammox versus partial denitrification-anammox[J]. Science of the Total Environment, 2019, 692: 393-401.
    [17] STROUS M, HEIJNEN J J, KUENEN J G, et al. The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms[J]. Applied Microbiology and Biotechnology, 1998, 50(5): 589-596.
    [18] 陈玉斌. 微藻曝气强化短程硝化/厌氧氨氧化生物低耗脱氮特性研究[D].大连:辽宁师范大学, 2021.
    [19] MANSER N D, WANG M, ERGAS S J, et al. Biological nitrogen removal in a photosequencing batch reactor with an algal-nitrifying bacterial consortium and anammox granules[J]. Environmental Science & Technology Letters, 2016, 3(4): 175-179.
    [20] CHEN J, STROUS M. Denitrification and aerobic respiration, hybrid electron transport chains and co-evolution[J]. Biochimica Et Biophysica Acta-Bioenergetics, 2013, 1827(2): 136-144.
    [21] RUIZ G, JEISON D, RUBILAR O, et al. Nitrification-denitrification via nitrite accumulation for nitrogen removal from wastewaters[J]. Bioresource Technology, 2006, 97(2): 330-335.
    [22] ZHANG Y, WANG J, PENG S, et al. Autotrophic biological nitrogen removal in a bacterial-algal symbiosis system: formation of integrated algae/partial-nitrification/anammox biofilm and metagenomic analysis[J]. Chemical Engineering Journal, 2022, 439: 135689.
    [23] KASPARY T E, LAMEGO F P, CUTTI L, et al. Determination of photosynthetic pigments in fleabane biotypes susceptible and resistant to resistant to the herbicde glyphosate[J]. Planta Daninha, 2014, 32(2): 417-426.
    [24] BLACKBURNE R, YUAN Z, KELLER J. Partial nitrification to nitrite using low dissolved oxygen concentration as the main selection factor[J]. Biodegradation, 2008, 19(2): 303-312.
    [25] SLIEKERS A O, HAAIJER S C M, STAFSNES M H, et al. Competition and coexistence of aerobic ammonium- and nitrite-oxidizing bacteria at low oxygen concentrations[J]. Applied Microbiology and Biotechnology, 2005, 68(6): 808-817.
    [26] ZHOU Y, LI X, CHEN J, et al. Treatment of antibiotic-containing wastewater with self-suspended algae-bacteria symbiotic particles: removal performance and reciprocal mechanism[J]. Chemosphere, 2023, 323: 138240.
    [27] LIN Q, KANG D, ZHANG M, et al. The performance of anammox reactor during start-up: enzymes tell the story[J]. Process Safety and Environmental Protection, 2019, 121: 247-253.
    [28] DYTCZAK M A, LONDRY K L, OLESZKIEWICZ J A. Activated sludge operational regime has significant impact on the type of nitrifying community and its nitrification rates[J]. Water Research, 2008, 42(8/9): 2320-2328.
    [29] 陈琳琳. 藻强化短程硝化-厌氧氨氧化工艺处理煤化工废水的脱氮效果研究[D].大连:辽宁师范大学, 2019.
    [30] XU Z, ZHANG L, GAO X, et al. Optimization of the intermittent aeration to improve the stability and flexibility of a mainstream hybrid partial nitrification-anammox system[J]. Chemosphere, 2020, 261: 127670.
    [31] 樊沈毅. AnAOB快速培养及PN-Anammox技术在高氨氮工业废水中的应用研究[D].无锡:江南大学, 2022.
    [32] 黄子恒, 张立, 崔舒惠, 等. 冷冻PN/A颗粒污泥快速活化过程中的污泥形态与菌群演化特征分析[J]. 环境科学, 2022, 43(2): 920-927.
    [33] LI H, CHI Z F, YAN B X. Long-term impacts of graphene oxide and Ag nanoparticles on anammox process: performance, microbial community and toxic mechanism[J]. Journal of Environmental Sciences, 2019, 79(5): 244-252.
    [34] QIAN P, GARDINER A T, SIMOVA I, et al. 2.4-angstrom structure of the double-ring Gemmatimonas phototrophica photosystem[J]. Science Advances, 2022, 8(7): eabk3139.
    [35] AIRA M, OLCINA J, PEREZ-LOSADA M, et al. Characterization of the bacterial communities of casts from Eisenia andrei fed with different substrates[J]. Applied Soil Ecology, 2016, 98: 103-111.
    [36] KANG H, KIM H, JOUNG Y, et al. Ferruginibacter paludis sp nov., isolated from wetland freshwater, and emended descriptions of Ferruginibacter lapsinanis and Ferruginibacter alkalilentus[J]. International Journal of Systematic and Evolutionary Microbiology, 2015, 65: 2635-2639.
    [37] 杨安娜, 陆云峰, 张俊红, 等. 杉木人工林土壤养分及酸杆菌群落结构变化[J]. 林业科学, 2019, 55(1): 119-127.
    [38] JONES R T, ROBESON M S, LAUBER C L, et al. A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses[J]. The ISME Journal, 2009, 3(4): 442-453.
    [39] 王祥荣. 衣藻属的采集、培养[J]. 植物杂志, 1987(3): 23.
    [40] DAM H V, MERTENS A, SINKELDAM J. A coded checklist and ecological indicator values of freshwater diatoms from the Netherlands[J]. Netherland Journal of Aquatic Ecology, 1994, 28(1): 117-133.
  • 加载中
计量
  • 文章访问数:  110
  • HTML全文浏览量:  10
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-28
  • 网络出版日期:  2024-07-11

目录

    /

    返回文章
    返回