CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊
JST China 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

菌藻共生系统实现短程硝化工艺的藻供氧条件和影响因素分析

许华一 李姗蔚 韦静 周向同 吴智仁

许华一, 李姗蔚, 韦静, 周向同, 吴智仁. 菌藻共生系统实现短程硝化工艺的藻供氧条件和影响因素分析[J]. 环境工程, 2024, 42(5): 42-52. doi: 10.13205/j.hjgc.202405006
引用本文: 许华一, 李姗蔚, 韦静, 周向同, 吴智仁. 菌藻共生系统实现短程硝化工艺的藻供氧条件和影响因素分析[J]. 环境工程, 2024, 42(5): 42-52. doi: 10.13205/j.hjgc.202405006
XU Huayi, LI Shanwei, WEI Jing, ZHOU Xiangtong, WU Zhiren. STUDY ON OXYGEN SUPPLY CONDITION AND INFLUENCE OF ALGAL IN PARTIAL NITRIFICATION PROCESS IN A BACTERIA AND ALGAE SYMBIOTIC SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(5): 42-52. doi: 10.13205/j.hjgc.202405006
Citation: XU Huayi, LI Shanwei, WEI Jing, ZHOU Xiangtong, WU Zhiren. STUDY ON OXYGEN SUPPLY CONDITION AND INFLUENCE OF ALGAL IN PARTIAL NITRIFICATION PROCESS IN A BACTERIA AND ALGAE SYMBIOTIC SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(5): 42-52. doi: 10.13205/j.hjgc.202405006

菌藻共生系统实现短程硝化工艺的藻供氧条件和影响因素分析

doi: 10.13205/j.hjgc.202405006
基金项目: 

国家自然科学基金青年科学基金项目“电诱导快速定向驯化氨氧化污泥及强化脱氮机理”(52000089)

详细信息
    作者简介:

    许华一(1998-),男,硕士研究生,主要研究方向为短程硝化-厌氧氨氧化工艺。1210597798@qq.com

    通讯作者:

    李姗蔚(1987-),女,助理研究员,主要研究方向为生物脱氮理论与技术。lsw3@ujs.edu.cn

STUDY ON OXYGEN SUPPLY CONDITION AND INFLUENCE OF ALGAL IN PARTIAL NITRIFICATION PROCESS IN A BACTERIA AND ALGAE SYMBIOTIC SYSTEM

  • 摘要: 通过调节光照强度和藻浓度来实现最佳的短程硝化工艺,探究了光照强度和藻浓度对反应器出水水质、溶解氧(DO)浓度、氨氧化菌(AOB)数量和酶活、藻光合作用色素含量以及微生物形貌及群落结构的影响。水质测定结果表明:在16000 Lux光照强度和添加1170 mL小球藻培养液(OD680=1.6±0.4)的条件下,亚硝酸盐积累率达到88.88%,实现了良好的短程硝化效果。DO监测结果表明:反应器中ρ(DO)一直在0.1~0.11 mg/L,并且藻浓度是反应器中DO浓度的主要影响因素。AOB菌的氨单加氧酶(ammonia monooxygenase,AMO)活性和amoA基因拷贝数,以及藻的3种光合作用色素含量在反应器运行后期逐渐趋于稳定,说明反应器内AOB菌和藻逐渐形成了稳定的共生系统。高通量测序结果显示,AOB菌属Nitrosomonas和小球藻属Chlorella是主要的功能微生物,并且扫描电子显微镜观察到2种功能微生物的形貌。通过探究不同藻供氧条件对短程硝化工艺中功能微生物活性、数量和微生物群落结构的影响,为该工艺启动和稳定运行的藻供氧调控提供了理论参考。
  • [1] 张馨文, 王荣震, 冯成业, 等. 生活污水短程硝化脱氮工艺的快速启动及稳定性研究[J]. 环境工程, 2022, 40(10): 9-14.
    [2] 韩亚琳, 王福浩, 王群, 等. HSBBR运行模式对同步短程硝化反硝化脱氮及微生物群落特征的影响[J]. 环境工程, 2021, 39(1): 51-57

    ,17.
    [3] RAHIMI S, MODIN O, MIJAKOVIC I. Technologies for biological removal and recovery of nitrogen from wastewater[J]. Biotechnology Advances, 2020, 43: 107570.
    [4] GE S, WANG S, YANG X, et al. Detection of nitrifiers and evaluation of partial nitrification for wastewater treatment: a review[J]. Chemosphere, 2015, 140: 85-98.
    [5] PAREDES D, KUSCHK P, MBWETTE T S A, et al. New aspects of microbial nitrogen transformations in the context of wastewater treatment: a review[J]. Engineering in Life Sciences, 2007, 7(1): 13-25.
    [6] ANTHONISEN A C, LOEHR R, PRAKASAM T B S, et al. Inhibition of nitrification by ammonia and nitrous-acid[J]. Journal-Water Pollution Control Federation, 1976, 48(5): 835-852.
    [7] 冯思然, 朱顺妮, 王忠铭. 微藻污水处理研究进展[J]. 环境工程, 2019, 37(4): 57-62

    ,56.
    [8] CESAR BELTRAN-ROCHA J, DAGMAR BARCELO-QUINTAL I, GARCIA-MARTINEZ M, et al. Polishing of municipal secondary effluent using native microalgae consortia[J]. Water Science and Technology, 2017, 75(7): 1693-1701.
    [9] 郑耀通, 吴小平, 高树芳. 固定化菌藻系统去除氨氮影响[J]. 江西农业大学学报, 2003(1): 99-102.
    [10] 宋彧. 启动藻强化短程硝化-厌氧氨氧化反应器处理模拟腈纶废水的工艺研究[D].大连:辽宁师范大学, 2019.
    [11] 李竺芯, 樊迪, 那娜, 等. 光照条件对菌藻共生系统单级脱氮的影响研究[J]. 环境科学与技术, 2019, 42(10): 78-82.
    [12] 巩有奎, 李永波, 苗志加. 不同进水方式下短程反硝化过程中N2O产量[J]. 环境工程, 2018, 36(10): 59-63.
    [13] LICHTENTHALER H K. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes[M]//Methods in Enzymology. Academic Press, 1987: 350-382.
    [14] 张峰峰, 周可, 谢凤行, 等. Pseudomonas alcaliphila AD-28的脱氮性能及其关键酶活性[J]. 微生物学通报, 2019, 46(9): 2166-2174.
    [15] 徐晓庆, 苏命, 朱宜平, 等. 基于荧光定量PCR技术构建水源地典型致嗅物质2-甲基异莰醇的评估方法及其应用[J]. 环境工程学报, 2020, 14(11): 3208-3215.
    [16] ZHANG M, WANG S, JI B, et al. Towards mainstream deammonification of municipal wastewater: partial nitrification-anammox versus partial denitrification-anammox[J]. Science of the Total Environment, 2019, 692: 393-401.
    [17] STROUS M, HEIJNEN J J, KUENEN J G, et al. The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms[J]. Applied Microbiology and Biotechnology, 1998, 50(5): 589-596.
    [18] 陈玉斌. 微藻曝气强化短程硝化/厌氧氨氧化生物低耗脱氮特性研究[D].大连:辽宁师范大学, 2021.
    [19] MANSER N D, WANG M, ERGAS S J, et al. Biological nitrogen removal in a photosequencing batch reactor with an algal-nitrifying bacterial consortium and anammox granules[J]. Environmental Science & Technology Letters, 2016, 3(4): 175-179.
    [20] CHEN J, STROUS M. Denitrification and aerobic respiration, hybrid electron transport chains and co-evolution[J]. Biochimica Et Biophysica Acta-Bioenergetics, 2013, 1827(2): 136-144.
    [21] RUIZ G, JEISON D, RUBILAR O, et al. Nitrification-denitrification via nitrite accumulation for nitrogen removal from wastewaters[J]. Bioresource Technology, 2006, 97(2): 330-335.
    [22] ZHANG Y, WANG J, PENG S, et al. Autotrophic biological nitrogen removal in a bacterial-algal symbiosis system: formation of integrated algae/partial-nitrification/anammox biofilm and metagenomic analysis[J]. Chemical Engineering Journal, 2022, 439: 135689.
    [23] KASPARY T E, LAMEGO F P, CUTTI L, et al. Determination of photosynthetic pigments in fleabane biotypes susceptible and resistant to resistant to the herbicde glyphosate[J]. Planta Daninha, 2014, 32(2): 417-426.
    [24] BLACKBURNE R, YUAN Z, KELLER J. Partial nitrification to nitrite using low dissolved oxygen concentration as the main selection factor[J]. Biodegradation, 2008, 19(2): 303-312.
    [25] SLIEKERS A O, HAAIJER S C M, STAFSNES M H, et al. Competition and coexistence of aerobic ammonium- and nitrite-oxidizing bacteria at low oxygen concentrations[J]. Applied Microbiology and Biotechnology, 2005, 68(6): 808-817.
    [26] ZHOU Y, LI X, CHEN J, et al. Treatment of antibiotic-containing wastewater with self-suspended algae-bacteria symbiotic particles: removal performance and reciprocal mechanism[J]. Chemosphere, 2023, 323: 138240.
    [27] LIN Q, KANG D, ZHANG M, et al. The performance of anammox reactor during start-up: enzymes tell the story[J]. Process Safety and Environmental Protection, 2019, 121: 247-253.
    [28] DYTCZAK M A, LONDRY K L, OLESZKIEWICZ J A. Activated sludge operational regime has significant impact on the type of nitrifying community and its nitrification rates[J]. Water Research, 2008, 42(8/9): 2320-2328.
    [29] 陈琳琳. 藻强化短程硝化-厌氧氨氧化工艺处理煤化工废水的脱氮效果研究[D].大连:辽宁师范大学, 2019.
    [30] XU Z, ZHANG L, GAO X, et al. Optimization of the intermittent aeration to improve the stability and flexibility of a mainstream hybrid partial nitrification-anammox system[J]. Chemosphere, 2020, 261: 127670.
    [31] 樊沈毅. AnAOB快速培养及PN-Anammox技术在高氨氮工业废水中的应用研究[D].无锡:江南大学, 2022.
    [32] 黄子恒, 张立, 崔舒惠, 等. 冷冻PN/A颗粒污泥快速活化过程中的污泥形态与菌群演化特征分析[J]. 环境科学, 2022, 43(2): 920-927.
    [33] LI H, CHI Z F, YAN B X. Long-term impacts of graphene oxide and Ag nanoparticles on anammox process: performance, microbial community and toxic mechanism[J]. Journal of Environmental Sciences, 2019, 79(5): 244-252.
    [34] QIAN P, GARDINER A T, SIMOVA I, et al. 2.4-angstrom structure of the double-ring Gemmatimonas phototrophica photosystem[J]. Science Advances, 2022, 8(7): eabk3139.
    [35] AIRA M, OLCINA J, PEREZ-LOSADA M, et al. Characterization of the bacterial communities of casts from Eisenia andrei fed with different substrates[J]. Applied Soil Ecology, 2016, 98: 103-111.
    [36] KANG H, KIM H, JOUNG Y, et al. Ferruginibacter paludis sp nov., isolated from wetland freshwater, and emended descriptions of Ferruginibacter lapsinanis and Ferruginibacter alkalilentus[J]. International Journal of Systematic and Evolutionary Microbiology, 2015, 65: 2635-2639.
    [37] 杨安娜, 陆云峰, 张俊红, 等. 杉木人工林土壤养分及酸杆菌群落结构变化[J]. 林业科学, 2019, 55(1): 119-127.
    [38] JONES R T, ROBESON M S, LAUBER C L, et al. A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses[J]. The ISME Journal, 2009, 3(4): 442-453.
    [39] 王祥荣. 衣藻属的采集、培养[J]. 植物杂志, 1987(3): 23.
    [40] DAM H V, MERTENS A, SINKELDAM J. A coded checklist and ecological indicator values of freshwater diatoms from the Netherlands[J]. Netherland Journal of Aquatic Ecology, 1994, 28(1): 117-133.
  • 加载中
计量
  • 文章访问数:  53
  • HTML全文浏览量:  5
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-28
  • 网络出版日期:  2024-07-11

目录

    /

    返回文章
    返回