CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊
JST China 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

常州春季PM2.5的氧化潜势及其来源解析

吴一昊 崔尧嘉 臧鑫芝 王文强 叶招莲

吴一昊, 崔尧嘉, 臧鑫芝, 王文强, 叶招莲. 常州春季PM2.5的氧化潜势及其来源解析[J]. 环境工程, 2024, 42(5): 53-61. doi: 10.13205/j.hjgc.202405007
引用本文: 吴一昊, 崔尧嘉, 臧鑫芝, 王文强, 叶招莲. 常州春季PM2.5的氧化潜势及其来源解析[J]. 环境工程, 2024, 42(5): 53-61. doi: 10.13205/j.hjgc.202405007
WU Yihao, CUI Yaojia, ZANG Xinzhi, WANG Wenqiang, YE Zhaolian. OXIDATIVE POTENTIAL AND SOURCE APPORTIONMENT OF PM2.5 DURING SPRING IN CHANGZHOU[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(5): 53-61. doi: 10.13205/j.hjgc.202405007
Citation: WU Yihao, CUI Yaojia, ZANG Xinzhi, WANG Wenqiang, YE Zhaolian. OXIDATIVE POTENTIAL AND SOURCE APPORTIONMENT OF PM2.5 DURING SPRING IN CHANGZHOU[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(5): 53-61. doi: 10.13205/j.hjgc.202405007

常州春季PM2.5的氧化潜势及其来源解析

doi: 10.13205/j.hjgc.202405007
基金项目: 

常州重点实验室项目(CM20223017)

江苏省自然科学基金项目(BK20221405)

江苏理工学院研究生实践创新计划(XSJCX23_82)

江苏省研究生实践创新计划(SJCX21_1332)

详细信息
    作者简介:

    吴一昊(2000-),男,硕士,主要研究方向为环境污染控制。1048025322@qq.com

    通讯作者:

    叶招莲(1978-),女,教授,主要研究方向为大气中颗粒物组分分析及源解析、大气液相氧化机制研究以及工业VOCs气体治理新材料与新技术开发。bess_ye@jsut.edu.cn

OXIDATIVE POTENTIAL AND SOURCE APPORTIONMENT OF PM2.5 DURING SPRING IN CHANGZHOU

  • 摘要: 为探究细颗粒物(PM2.5)的健康风险及其来源,采用二硫苏糖醇(DTT)法测定了常州春季PM2.5的氧化潜势(OP),用DTTv(体积归一化的DTT)和DTTm(质量归一化的DTT)表征。采用正定矩阵因子分解法(PMF)、主成分分析(PCA)联合多元线性回归(MLR)2种方法解析了DTTv的来源。结果表明:采样期间大气PM2.5的DTTv和DTTm日平均值分别为(0.83±0.09)nmol/(min·m3)和(12.52±4.22)pmol/(min·μg),处于国内相对较低的暴露水平。有机碳、二次离子(SO42-、NO3-和NH4+)和交通源特征元素(Cu、Zn等)与DTTv呈中度相关,说明二次源、交通源等对健康相关的PM暴露产生一定影响。PMF对DTTv的源解析结果也表明,交通源(40.1%)和二次源(35.6%)对DTTv的贡献高于扬尘源(18.6%)和燃烧源(5.8%),MLR-PCA解析结果进一步证实了交通源和二次源对DTTv的重要贡献。该成果可为大气污染精准防控和健康影响分析提供参考。
  • [1] 李文静, 张美云, 万博宇, 等. 北京市朝阳区大气PM2.5中重金属对居民健康影响的风险评估[J]. 现代预防医学, 2021, 48(3): 416-419.
    [2] ALAM M S,DELGADO-SABORIT J M,STARK C,et al.Using atmospheric measurements of PAH and quinone compounds at roadside and urban background sites to assess sources and reactivity[J].Atmospheric Environment, 2013, 77: 24-35.
    [3] LYU Y, GUO H B, CHENG T T, et al. Particle size distributions of oxidative potential of lung-deposited particles: assessing contributions from quinones and water-soluble metals[J]. Environmental Science & Technology, 2018, 52(11): 6592-6600.
    [4] VERMA V, FANG T, GUO H, et al. Reactive oxygen species associated with water-soluble PM2.5 in the southeastern United States: spatiotemporal trends and source apportionment[J]. Atmospheric Chemistry and Physics, 2014, 14(23): 12915-12930.
    [5] BATES J T, FANG T, VERMA V, et al. Review of acellular assays of ambient particulate matter oxidative potential: methods and relationships with composition, sources, and health effects[J]. Environmental Science & Technology, 2019, 53(8): 4003-4019.
    [6] XU X Y, LU X H, LI X, et al. ROS-generation potential of Humic-like substances (HULIS) in ambient PM2.5 in urban Shanghai: association with HULIS concentration and light absorbance[J]. Chemosphere, 2020, 256: 127050.
    [7] 陈丹鈜, 张志豪, 张珅, 等. 武汉市冬季重污染期PM2.5的氧化潜势分析[J]. 环境科学与技术, 2020, 43(10): 171-176.
    [8] CHEN Q C, WANG M M, WANG Y Q, et al. Oxidative potential of water-soluble matter associated with chromophoric substances in PM2.5 over Xi’an, China[J]. Environmental Science & Technology, 2019, 53(15): 8574-8584.
    [9] WANG Y Q, WANG M M, LI S P, et al. Study on the oxidation potential of the water-soluble components of ambient PM2.5 over Xi’an, China: pollution levels, source apportionment and transport pathways[J]. Environment International, 2020, 136: 105515.
    [10] WANG J P, LIN X, LU L P, et al. Temporal variation of oxidative potential of water-soluble components of ambient PM2.5 measured by dithiothreitol (DTT) assay[J]. Science of the Total Environment, 2019, 649: 969-978.
    [11] FANG T, VERMA V, BATES J T, et al. Oxidative potential of ambient water-soluble PM2.5 in the southeastern United States: contrasts in sources and health associations between ascorbic acid (AA) and dithiothreitol (DTT) assays[J]. Atmospheric Chemistry and Physics, 2016, 16(6): 3865-3879.
    [12] 王嘉琦,赵时真,田乐乐, 等. 基于DTT法评估大气颗粒物氧化潜势的研究进展[J]. 生态毒理学报,2022, 17(2):20-29.
    [13] CAO T, LI M J, ZOU C L, et al. Chemical composition, optical properties, and oxidative potential of water- and methanol-soluble organic compounds emitted from the combustion of biomass materials and coal[J]. Atmospheric Chemistry and Physics, 2021, 21(17): 13187-13205.
    [14] YU S Y, LIU W J, XU Y S, et al. Characteristics and oxidative potential of atmospheric PM2.5 in Beijing: source apportionment and seasonal variation[J]. Science of the Total Environment, 2019, 650(1): 277-287.
    [15] LIN M, YU J Z. Dithiothreitol (DTT) concentration effect and its implications on the applicability of DTT assay to evaluate the oxidative potential of atmospheric aerosol samples[J]. Environmental Pollution, 2019, 251: 938-944.
    [16] HELLACK B, QUASS U, NICKEL C, et al. Oxidative potential of particulate matter at a German motorway[J]. Environmental Science Processes & Impacts, 2015, 17(4): 868-76.
    [17] SAFFARI A, DAHER N, SHAFER M M, et al. Seasonal and spatial variation in dithiothreitol (DTT) activity of quasi-ultrafine particles in the Los Angeles Basin and its association with chemical species[J]. Journal of Environmental Science and Health Part A, Toxic/Hazardous Substances & Environmental Engineering, 2014, 49(4): 441-451.
    [18] VERMA V, WANG Y, EL-AFIFI R, et al. Fractionating ambient humic-like substances (HULIS) for their reactive oxygen species activity:assessing the importance of quinones and atmospheric aging[J]. Atmospheric Environment, 2015, 120: 351-359.
    [19] MA Y Q, CHENG Y B, QIU X H, et al. Sources and oxidative potential of water-soluble humic-like substances (HULISws) in fine particulate matter (PM2.5) in Beijing[J]. Atmospheric Chemistry and Physics, 2018, 18(8): 5607-5617.
    [20] LIU W J, XU Y S, LIU W X, et al. Oxidative potential of ambient PM2.5 in the coastal cities of the Bohai Sea, northern China: seasonal variation and source apportionment[J]. Environmental Pollution, 2018, 236: 514-528.
    [21] LIU Q, BAUMGARTNER J, ZHANG Y, et al. Oxidative potential and inflammatory impacts of source apportioned ambient air pollution in Beijing[J]. Environmental Science & Technology, 2014, 48(21): 12920-12929.
    [22] 任娇, 赵荣荣, 王铭, 等. 太原市冬季不同污染程度下PM2.5的化学组成、消光特征及氧化潜势[J]. 环境科学, 2022, 43(5): 2317-2328.
    [23] XU H M, CAO J J, HO K F, et al. Lead concentrations in fine particulate matter after the phasing out of leaded gasoline in Xi’an, China[J]. Atmospheric Environment, 2012, 46: 217-224.
    [24] 叶招莲, 刘佳澍, 李清, 等. 常州夏秋季PM2.5中碳质气溶胶特征及来源[J]. 环境科学, 2017, 38(11): 4469-4477.
    [25] YE Z L, LIU J S, GU A J, et al. Chemical characterization of fine particulate matter in Changzhou, China, and source apportionment with offline aerosol mass spectrometry[J]. Atmospheric Chemistry and Physics, 2017, 17(4): 2573-2592.
    [26] LIU Y, LI H W, CUI S J, et al. Chemical characteristics and sources of water-soluble organic nitrogen species in PM2.5 in Nanjing, China[J]. Atmosphere, 2021, 12(5): 574.
    [27] GUO W, ZHANG Z Y, ZHENG N J, et al. Chemical characterization and source analysis of water-soluble inorganic ions in PM2.5 from a plateau city of Kunming at different seasons[J]. Atmospheric Research, 2020, 234: 104687.
    [28] YU H R, WEI J L, CHENG Y L, et al. Synergistic and antagonistic interactions among the particulate matter components in generating reactive oxygen species based on the dithiothreitol assay[J]. Environmental Science & Technology, 2018, 52(4): 2261-2270.
    [29] SHIRMOHAMMADI F, HASHEMINASSAB S, WANG D B, et al. Oxidative potential of coarse particulate matter (PM(10-2.5)) and its relation to water solubility and sources of trace elements and metals in the Los Angeles Basin[J]. Environmental Science Processes & Impacts, 2015, 17(12): 2110-2121.
    [30] WANG Y, PUTHUSSERY J V, YU H, et al. Sources of cellular oxidative potential of water-soluble fine ambient particulate matter in the Midwestern United States[J]. Journal of Hazardous Materials, 2022, 425: 127777.
    [31] GUO H B, LI M, LYU Y, et al. Size-resolved particle oxidative potential in the office, laboratory, and home: evidence for the importance of water-soluble transition metals[J]. Environmental Pollution, 2019, 246: 704-709.
    [32] 张曼曼, 李慧蓉, 杨闻达, 等. 基于DTT法测量广州市区PM2.5的氧化潜势[J]. 中国环境科学, 2019, 39(6): 2258-2266.
    [33] YANG F, LIU C, QIAN H. Comparison of indoor and outdoor oxidative potential of PM2.5: pollution levels, temporal patterns, and key constituents[J]. Environment International, 2021, 155: 106684.
    [34] LIU Q Y, LU Z J, XIONG Y, et al. Oxidative potential of ambient PM2.5 in Wuhan and its comparisons with eight areas of China[J]. Science of the Total Environment, 2020, 701: 134844.
    [35] SULAYMON I D, MEI X D, YANG S J, et al. PM2.5 in Abuja, Nigeria: chemical characterization, source apportionment, temporal variations, transport pathways and the health risks assessment[J]. Atmospheric Research, 2020, 237.
    [36] VELALI E, PAPACHRISTOU E, PANTAZAKI A, et al. Redox activity and in vitro bioactivity of the water-soluble fraction of urban particulate matter in relation to particle size and chemical composition[J]. Environmental Pollution, 2016, 208(Pt B): 774-786.
    [37] 陈新星, 李洁, 张良瑜, 等. 南京市冬季PM2.5中水溶性离子污染特征研究[J]. 环境监测管理与技术, 2022, 34(2): 12-15

    ,26.
    [38] 赵静琦, 姬亚芹, 张蕾, 等. 基于样方法的天津市春季道路扬尘PM2.5中水溶性离子特征及来源解析[J]. 环境科学, 2018, 39(5): 1994-1999.
    [39] CHIRIZZI D, CESARI D, GUASCITO M R, et al. Influence of Saharan dust outbreaks and carbon content on oxidative potential of water-soluble fractions of PM2.5 and PM10[J]. Atmospheric Environment, 2017, 163: 1-8.
    [40] 吴继炎, 杨池, 张春燕, 等. 保定市冬季PM2.5的氧化潜势特征及其影响来源分析[J]. 环境科学, 2022, 43(6): 2878-2887.
  • 加载中
计量
  • 文章访问数:  70
  • HTML全文浏览量:  5
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-06
  • 网络出版日期:  2024-07-11

目录

    /

    返回文章
    返回