ENHANCEMENT OF BIO-HYDROGEN PRODUCTION EFFICIENCY AND APPLICATION POTENTIAL OF PEANUT SHELL WITH LOW-TEMPERATURE PRETREATMENT
-
摘要: 目前对于纤维素类废弃物发酵产氢效率提升的研究,大多集中于各种预处理方式对比及实验条件优化方向,但对低温常压预处理技术研究较少。采用正交试验设计(OED)和中心复合设计(CCD)设计了预处理条件,并通过直接测量法和响应面法对预处理温度条件和时间条件进行了优化。利用修正Gompertz模型(MGM)和Logistic函数模型(LFM)对低温预处理后的花生壳生物产氢进行了动力学模拟,并分析了其应用潜力。正交试验结果表明:花生壳在50 ℃下预处理12 h,最大TRS(总还原糖)为3.16%,优于中心复合设计。PSP在-80 ℃下处理12 h,产氢量达到最大值109.2 mL,相比对照组提高了54.46%。模型模拟表明:LFM对氢气产量的预测要比MGM更准确,预测值与实际值之间较高的相关系数和皮尔逊相关性也证明了这一点。低温预处理能有效提高花生壳的还原糖释放量,提升其产氢效率,在个别温度适宜的花生产区(如东北、河南等地),可借助自然气温实现花生壳的低能耗预处理,为经济高效、稳定地从花生壳中回收生物能源提供了一种新思路。Abstract: At present, research on improving the hydrogen production efficiency of cellulose waste fermentation mostly focuses on comparing different pretreatment methods and optimizing experimental conditions. While there is little research on the experimental design and application analysis of low-temperature pretreatment technology. In this study, the pretreatment temperature and time of temperature pretreatment on peanut shell were optimized for further biohydrogen production. The pretreatment conditions were designed using orthogonal experiment design (OED) and central composite design (CCD) and optimized using the direct measurement and response surface methods. The modified Gompertz model (MGM) and a logistic function model (LFM) were employed to determine the kinetics of hydrogen-rich bioenergy production from the peanut shell. The OED results showed that peanut shell pretreated for 12 h at 50 ℃ produced the maximum TRS of 3.16%, exhibiting a better result than CCD. A maximum hydrogen yield of 109.2 mL was obtained when the PSP was pretreated at -80 ℃ for 12 h, which was 54.46% higher than the control. Model simulation indicated that the LFM predicted hydrogen production more accurately than the MGM, as evidenced by the high correlation coefficient and high Pearson’s correlation between predicted and actual values. The high hydrogen yield promotion and the realization of no energy consumption of the temperature pretreatment in some peanut shell planting areas, can provide a potential application for cost-efficient and stabilized bioenergy recovery from peanut shell with temperature pretreatment.
-
[1] 荆勇,冯晶,赵立欣, 等.木屑生物炭对秸秆和牛粪厌氧发酵产甲烷性能的影响[J].环境工程,2021,39(1):154-160. [2] 陈思哲,刘国华,李波, 等.氢氧化钠和碱性双氧水预处理对水稻秸秆酶解效果的影响[J].环境科学研究,2022,35(8):1864-1872. [3] 朱心宇,张洁,孙晓娇, 等.厌氧互营苯甲酸降解菌Sporotomaculum syntrophicum对玉米秸秆沼气发酵的生物强化作用[J].环境工程,2022,40(5):75-81. [4] 康雅茹,田光明,何若.小麦秸秆预处理对厌氧消化性能的影响研究[J].环境污染与防治,2022,44(1):1-7. [5] 王芳,牛卫生,罗冰, 等.热化学预处理玉米秸秆厌氧消化产气特性研究[J].太阳能学报,2015,36(8):1965-1970. [6] 黄菊,徐艳,史小琴, 等.爆炸冲击波联合碱预处理提高玉米秸秆糖化率的研究[J].太阳能学报,2022,43(12):464-468. [7] DOS SANTOS ROCHA M S R, PRATTO B, de SOUSA JÚNIOR R, et al. A kinetic model for hydrothermal pretreatment of sugarcane straw[J]. Bioresource Technology, 2017, 228: 176-185. [8] ZHOU X F, LI Q, ZHANG Y L, et al. Effect of hydrothermal pretreatment on Miscanthus anaerobic digestion[J]. Bioresource Technology, 2017, 224: 721-726. [9] YOUSEFIFAR A, BAROUTIAN S, FARID M M, et al. Hydrothermal processing of cellulose: a comparison between oxidative and non-oxidative processes[J]. Bioresource Technology, 2017, 226: 229-237. [10] 崔思娇,汪宇,张大军, 等.正交设计法优选通脉分散片的水提取工艺[J].当代化工,2023,52(3):575-578. [11] 龙维斌,习锟,吕鹏飞, 等.中心复合设计法优化聚异丁烯丁二酸酐的制备工艺[J].化工管理,2021(36):152-155. [12] ZHANG Y, YUAN J F, GUO L J. Enhanced bio-hydrogen production from cornstalk hydrolysate pretreated by alkaline-enzymolysis with orthogonal design method[J]. International Journal of Hydrogen Energy, 2020,45(6): 3750-3759. [13] MACHROUHI A, ALILOU H, FARNANE M, et al. Statistical optimization of activated carbon from Thapsia transtagana stems and dyes removal efficiency using central composite design[J]. Journal of Science: Advanced Materials and Devices, 2019,4(4): 544-553. [14] ZHAO X, LI D Y, XU S H, et al. Clostridium guangxiense sp nov and Clostridium neuense sp nov., two phylogenetically closely related hydrogen-producing species isolated from lake sediment[J]. International Journal of Systematic and Evolutionary Microbiology, 2017, 67(3): 710-715. [15] 刘闻远,辛娅,王殿龙, 等.生物炭和乙醇对油菜秸秆沼气发酵特性的影响[J].太阳能学报,2023,44(3):277-283. [16] 毛亚玲,李俊娥,于静, 等.酒酒球菌和酿酒酵母共接种发酵动力学模型建立[J].食品科学,2023,44(2):156-164. [17] 赵凯,许鹏举,谷广烨, 等.3,5-二硝基水杨酸比色法测定还原糖含量的研究[J].食品科学,2008(8):534-536. [18] MINER G. Standard Methods for the Examination of Water and Wastewater, 21st Edition[M]. Journal American Water Works Association, 2006, (1):130. [19] 曹麒,何雨恒,卓桂华, 等.高温条件下初始pH值对污泥-餐厨垃圾联合厌氧发酵产氢余物产CH4的影响[J].环境工程,2022,40(9):150-157. [20] TIAN Y T, ZENG H L, XU Z B, et al. Ultrasonic-assisted extraction and antioxidant activity of polysaccharides recovered from white button mushroom (Agaricus bisporus)[J]. Carbohydrate Polymers, 2012, 88(2): 522-529. [21] ZHANG Y, YUAN J F, GUO L J. Enhanced bio-hydrogen production from cornstalk hydrolysate pretreated by alkaline-enzymolysis with orthogonal design method[J]. International Journal of Hydrogen Energy, 2020, 45(6):3750-3759. [22] ZOU S Z, WANG H, WANG X J, et al. Application of experimental design techniques in the optimization of the ultrasonic pretreatment time and enhancement of methane production in anaerobic co-digestion[J]. Applied Energy, 2016, 179: 191-202. [23] 龙於洋,范丽娇,沈东升, 等.秸秆废物高值转化5-羟甲基糠醛的研究动态分析[J/OL].安全与环境学报:1-7[2023-04-20]. https://doi.org/10.13637/j.issn.1009-6094.2022.2594. [24] QI N, HU X M, XIN X T, et al. Mechanisms of biohydrogen recovery enhancement from peanut shell by C. guangxiense: temperature pretreatment ranges from -80 to 100℃[J]. Bioresource Technology, 2020, 304: 123026. [25] QI N, ZHAO X, LIANG C H, et al. Enhancement of fermentative H2 production with peanut shell as supplementary substrate: effects of acidification and buffer effect[J]. Bioresource Technology, 2019, 280: 502-504. [26] 李亚猛,荆艳艳,蒋丹萍, 等. 酸碱预处理对三球悬铃木落叶发酵产氢的影响[C]//中国高等教育学会工程热物理专业委员会.高等教育学会工程热物理专业委员会第二十一届全国学术会议论文集——热物理测量技术,2015:112-123. [27] 董丽丽. 碱尿预处理秸秆强化发酵产氢烷效能及机制研究[D].哈尔滨:哈尔滨工业大学,2021. [28] ANTONOPOULOU G, VAYENAS D, LYBERATOS G. Ethanol and hydrogen production from sunflower straw: the effect of pretreatment on the whole slurry fermentation[J]. Biochemical Engineering Journal, 2016, 116: 65-74.
点击查看大图
计量
- 文章访问数: 48
- HTML全文浏览量: 8
- PDF下载量: 4
- 被引次数: 0