中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同类型生物滞留设施土壤介质层氮磷分布特征分析

袁绍春 杨孟颖 陈茜 杨清伟 吕波

袁绍春, 杨孟颖, 陈茜, 杨清伟, 吕波. 不同类型生物滞留设施土壤介质层氮磷分布特征分析[J]. 环境工程, 2024, 42(5): 131-138. doi: 10.13205/j.hjgc.202405017
引用本文: 袁绍春, 杨孟颖, 陈茜, 杨清伟, 吕波. 不同类型生物滞留设施土壤介质层氮磷分布特征分析[J]. 环境工程, 2024, 42(5): 131-138. doi: 10.13205/j.hjgc.202405017
YUAN Shaochun, YANG Mengying, CHEN Xi, YANG Qingwei, LV Bo. DISTRIBUTION CHARACTERISTICS OF NITROGEN AND PHOSPHORUS IN SOIL MEDIUM LAYER IN DIFFERENT TYPES OF BIORETENTION FACILITIES[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(5): 131-138. doi: 10.13205/j.hjgc.202405017
Citation: YUAN Shaochun, YANG Mengying, CHEN Xi, YANG Qingwei, LV Bo. DISTRIBUTION CHARACTERISTICS OF NITROGEN AND PHOSPHORUS IN SOIL MEDIUM LAYER IN DIFFERENT TYPES OF BIORETENTION FACILITIES[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(5): 131-138. doi: 10.13205/j.hjgc.202405017

不同类型生物滞留设施土壤介质层氮磷分布特征分析

doi: 10.13205/j.hjgc.202405017
基金项目: 

重庆市自然科学基金(cstc2020jcyj-msxmX1000)

重庆市建设科技计划项目(城科字2020第5-7)

详细信息
    作者简介:

    袁绍春(1984-),男,副教授,主要从事城市雨洪管理、废水处理及资源化技术研究。yuansc@cqjtu.edu.cn

    通讯作者:

    袁绍春(1984-),男,副教授,主要从事城市雨洪管理、废水处理及资源化技术研究。yuansc@cqjtu.edu.cn

DISTRIBUTION CHARACTERISTICS OF NITROGEN AND PHOSPHORUS IN SOIL MEDIUM LAYER IN DIFFERENT TYPES OF BIORETENTION FACILITIES

  • 摘要: 为探明实际工程中生物滞留设施的N、P累积状况,以重庆市悦来海绵城市试点的典型生物滞留设施为研究对象,考察土壤介质不同深度TN、NH4+-N、NO3--N、TP、有效磷(AP)含量,研究介质层氮磷分布规律。结果表明:生态树池、雨水花园、生物滞留带、高位花坛设施中TN、TP在表层土壤(0~10 cm)中的含量最高,并随着深度增加呈逐渐降低趋势,其中雨水花园表层土壤TN含量最高,达到885 mg/kg;NH4+-N主要分布于中层土壤,约占总含量的28%;不同土层NO3--N含量差异较小,为0.31~1.25 mg/kg。含水率(WC)会影响土壤介质NO3--N和AP的分布,其中生态树池中上层土壤NO3--N含量与含水率(WC)在0.05水平上呈显著负相关,较高的WC有利于减少土壤NO3--N累积量;pH对土壤介质NO3--N、TN、TP、AP的分布均有一定影响,其中,NO3--N、AP含量与pH呈负相关,较高的pH有利于减少土壤NO3--N、AP累积量。
  • [1] 廖朝轩, 高爱国, 黄恩浩. 国外雨水管理对我国海绵城市建设的启示[J].水资源保护,2016,32(1):42-45

    ,50.
    [2] 王书敏, 何强, 徐强, 等. 生物滞留系统去除地表径流中的氮素研究评述[J]. 水科学进展, 2015,26(1):140-150.
    [3] 杨鑫, 王书敏, 胡澄, 等. 两种生物滞留系统脱氮除磷效果比较研究[J]. 环境科学学报, 2021,41(6):2162-2168.
    [4] 严慈玉, 王景芸, 康乾昌, 等. 可持续排水系统的发展与应用研究[J]. 城镇供水, 2019(6):54-57.
    [5] 张军, 张松, 柏双友, 等. 生物滞留系统的水文效应与污染物的去除研究[J]. 环境工程, 2015,33(8):17-21.
    [6] WANG H, MEI C, LIU J H, et al.A new strategy for integrated urban water management in China: sponge city[J].Science China-Technological Sciences,2018, 61(3): 317-329.
    [7] 李娟, 张伟, 桑敏, 等.生物滞留设施对雨水径流氮磷污染物净化机理和运行优化方式研究进展[J].环境工程, 2020,38(4):77-82

    ,113.
    [8] 仇付国, 陈丽霞. 雨水生物滞留系统控制径流污染物研究进展[J].环境工程学报,2016,10(4):1593-1602.
    [9] MORGANE L M, CHANTAL G, ALAIN M, et al. Eutrophication: a new wine in an old bottle?[J]. Science of the Total Environment, 2019,651(Pt 1):1-11.
    [10] YOU Z, ZHANG L, PAN S Y, et al. Performance evaluation of modified bioretention systems with alkaline solid wastes for enhanced nutrient removal from stormwater runoff[J]. Water Res, 2019,161:61-73.
    [11] HUNT W F, SMITH J T, JADLOCKI S J, et al. Pollutant removal and peak flow mitigation by a bioretention cell in urban charlotte, N.C.[J]. Journal of Environmental Engineering, 2008,134(5):403-408.
    [12] BROWN R A, HUNT W F. Underdrain configuration to enhance bioretention exfiltration to reduce pollutant loads[J]. Journal of Environmental Engineering, 2011,137(11):1082-1091.
    [13] DAVIS A P, SHOKOUHIAN M, SHARMA H, et al. Water quality improvement through bioretention media: nitrogen and phosphorus removal[J]. Water Environ Res, 2006,78(3):284-293.
    [14] PAYNE E, FLETCHER T, RUSSELL D, et al. Temporary storage or permanent removal? The division of nitrogen between biotic assimilation and denitrification in stormwater biofiltration systems[J]. PLoS One,2014,9(3):90890.
    [15] MANAL O, KHAMARUZAMAN W Y, HUSNA T, et al. A review of nitrogen removal for urban stormwater runoff in bioretention system[J]. Sustainability, 2019,5415-5415.
    [16] KAVEHEI E, SHAHRABI F B, JENKINS G A, et al. Soil nitrogen accumulation, denitrification potential, and carbon source tracing in bioretention Basins[J]. Water Research, 2021, 188: 116511.
    [17] 万哲希, 刘雨童, 李田. 木屑强化生物滞留池对径流中营养物质的长期有效去除[J]. 同济大学学报(自然科学版), 2019,47(2):215-221.
    [18] 甘春娟, 郑爽, 陈垚, 等. 氮素在雨水生物滞留系统多介质中的归趋与迁移特性[J]. 山东农业科学, 2019, 51: 10.
    [19] 王敏锋, 陈硕, 朱謇, 等. 模拟淋溶条件下沼液对菜田土壤磷素淋洗及其形态的影响[J]. 农业资源与环境学报, 2017,34(4):368-375.
    [20] HSIEH C H, DAVIS A P, NEEDELMAN B A. Nitrogen removal from urban stormwater runoff through layered bioretention columns[J]. Water Environ Res, 2007,79(12):2404-2411.
    [21] 马效芳, 陶权, 姚景, 等. 生物滞留池用于城市雨水径流控制研究现状和展望[J]. 环境工程, 2015, 33(6):6-9.
    [22] 方德贤, 董新宁, 邓承之, 等. 2008—2016年重庆地区降水时空分布特征[J]. 大气科学, 2020,44(2):327-340.
    [23] 中华人民共和国农业部. 土壤pH的测定:NY/T 1377—2017[S]. 北京: 中国环境科学出版社, 2017.
    [24] 环境保护部. 土壤干物质和水分的测定重量法:HJ 613—2011[S]. 北京: 中国环境科学出版社, 2011.
    [25] 环境保护部. 土壤质量全氮的测定凯氏法:HJ 717—2014[S]. 北京: 中国环境科学出版社, 2015.
    [26] 环境保护部. 水质铵的测定纳氏试剂比色法:GB/T 7479—1987[S]. 北京: 中国环境科学出版社, 2017.
    [27] 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会. 土壤硝态氮的测定紫外分光光度法:GB/T 32737—2016[S]. 北京: 中国环境科学出版社, 2017.
    [28] 环境保护部. 土壤总磷的测定碱熔-钼锑抗分光光度法:HJ 632—2011[S]. 北京: 中国环境科学出版社, 2012.
    [29] 环境保护部. 土壤有效磷的测定碳酸氢钠浸提-钼锑抗分光光度法:HJ 704—2014[S]. 北京: 中国环境科学出版社, 2014.
    [30] 环境保护部. 土壤有机碳的测定重铬酸钾氧化-分光光度法:HJ 615—2011[S]. 北京: 中国环境科学出版社, 2011.
    [31] 郭超, 谢潇, 李家科. 城市雨水花园集中入渗对土壤氮、磷、有机碳及重金属的影响[J]. 水土保持通报, 2022,42(1):26-33.
    [32] KONG Z, SONG Y Q, SHAO Z Y, et al. Biochar-pyrite bi-layer bioretention system for dissolved nutrient treatment and by-product generation control under various stormwater conditions[J]. Water Research,2021,206:117737.
    [33] LI L Q, DAVIS A P. Urban stormwater runoff nitrogen composition and fate in bioretention systems[J]. Environ Sci Technol, 2014,48(6):3403-3410.
    [34] 王禄, 喻志平, 赵智杰. 人工快速渗滤系统氨氮去除机理[J]. 中国环境科学, 2006,26(4):500-504.
    [35] VYMAZAL J. Removal of nutrients in various types of constructed wetlands[J]. Science of the Total Environment, 2007,380: 48-65.
    [36] LI H, LIU Z, TAN C, et al. Efficient nitrogen removal from stormwater runoff by bioretention system: the construction of plant carbon source-based heterotrophic and sulfur autotrophic denitrification process[J]. Bioresource Technology, 2022,349:126803.
    [37] BOHORQUEZ E, PAREDES D, ARIAS C A. Vertical flow-constructed wetlands for domestic wastewater treatment under tropical conditions: effect of different design and operational parameters[J]. Environ Technol, 2017,38(2):199-208.
    [38] 孙磊, 向平, 张智, 等. 潜流—表流复合人工湿地处理超低TN含量废水[J]. 水处理技术, 2020,46(4):97-101

    ,105.
    [39] 段小龙, 李家科, 蒋春博. 雨水生物滞留系统关键设计参数研究进展[J]. 安全与环境工程, 2022,29(2):111-119.
    [40] 邓建才, 陈效民, 柯用春, 等. 土壤水分对土壤中硝态氮水平运移的影响[J]. 中国环境科学, 2004,24(3):25-29.
    [41] WU T Y, SCHOENAU J J, LI F M, et al. Concepts and relative analytical techniques of soil organic matter[J]. The Journal of Applied Ecology, 2004,15(4):717-722.
    [42] 孙英杰, 吴昊, 王亚楠. 硝化反硝化过程中N2O释放影响因素[J]. 生态环境学报, 2011,20(2):384-388.
    [43] ZHANG Z S, XUE Z S, LYU X G, et al. Scaling of soil carbon, nitrogen, phosphorus and C:N∶P ratio patterns in peatlands of China[J].Chinese Geographical Science, 2017,27(4):507-515.
    [44] 白军红, 邓伟, 朱颜明, 等. 霍林河流域湿地土壤碳氮空间分布特征及生态效应[J]. 应用生态学报, 2003,14(9):1494-1498.
    [45] WANG J L, ZHONG Z M, WANG Z H, et al. Soil C/N distribution characteristics of alpine steppe ecosystem in Qinhai-Tibetan Plateau[J]. Acta Ecologica Sinica, 2014,23(2):9-19.
    [46] 胡敏杰, 任洪昌, 邹芳芳, 等. 闽江河口淡水、半咸水沼泽土壤碳氮磷分布及计量学特征[J]. 中国环境科学, 2016,36(3):917-926.
    [47] FLYNN E. Abiotic and microbial interactions during anaerobic transformations of Fe(Ⅱ) and NOx[J]. Frontiers in Microbiology, 2012,3:112.
    [48] 田玉红, 简璋, 李林建, 等. pH值对柳江沉积物及沿岸土壤吸附磷酸根影响[J]. 广西工学院学报, 2002,13(1):64-66

    ,70.
    [49] 刘彦伶, 李渝, 张艳, 等. 长期施用磷肥和有机肥黄壤微生物量磷特征[J]. 中国农业科学, 2021,54(6):1188-1198.
    [50] 戴薛.精准灌溉设备的控制算法[J].湖北农业科学,2014,53(15):3659-3661.
    [51] 王金林,闻禄,陈平,等.长期不同施肥对茶园土壤pH、茶叶产量可持续性和品质的影响[J].中国农学通报,2021,37(8):84-88.
    [52] ALAN E R, JONATHAN P L, PETER R R, et al. Plant and microbial strategies to improve the phosphorus efficiency of agriculture[J]. Plant and Soil, 2011,349(1/2):121-156.
    [53] KIRK G, KRONZUCKER H J. The potential for nitrification and nitrate uptake in the rhizosphere of wetland plants: a modelling study[J]. Annals of Botany, 2005,96: 639-646.
    [54] LUO Y H, YUE X P, DUAN Y Q, et al. A bilayer media bioretention system for enhanced nitrogen removal from road runoff[J]. Sci Total Environ, 2020,705(C):135893.
    [55] 王辉, 王全九, 邵明安. 前期土壤含水量对黄土坡面氮磷流失的影响及最优含水量的确定[J]. 环境科学学报, 2008,28(8):1571-1578.
    [56] SØBERG L C, VIKLANDER M, BLECKEN G. Nitrogen removal in stormwater bioretention facilities: effects of drying, temperature and a submerged zone[J]. Ecological Engineering, 2021,169:106302.
  • 加载中
计量
  • 文章访问数:  58
  • HTML全文浏览量:  9
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-01
  • 网络出版日期:  2024-07-11

目录

    /

    返回文章
    返回