HYPERSPECTRAL REMOTE-SENSING ESTIMATE OF CARBON STORAGE OF SUBTROPICAL PINUS MASSONIANA FOREST IN CHANGTING COUNTY, CHINA
-
摘要: 随着全球气候变暖的问题日趋严重,人们日益关注森林生态系统的碳储量变化。利用遥感技术估算森林碳储量是当前大面积森林碳储量估算的首选方法,而高光谱遥感技术的应用将有助于提高森林碳储量的估算精度。因此,进行了马尾松林碳储量的高光谱遥感估算研究,并将其结果与Landsat TM多光谱遥感估算的森林碳储量进行对比研究,分析了马尾松的光谱特征及其与碳储量之间的相关性,建立了马尾松林碳储量的高光谱、多光谱遥感模型。结果表明:基于高光谱遥感估算的马尾松林碳储量的精度高于多光谱遥感数据,基于高光谱的敏感波长构建的归一化植被指数建立的模型R2可接近0.8,均方根误差(root mean square error,RMSE)低至0.968 t/hm2。显然,高光谱遥感数据由于可以更准确地获取植被的微细光谱变化信息,更有利于植被生物量、碳储量等生化参数的反演,从而有效地提高马尾松林碳储量的估算精度。Abstract: The escalating concern over global warming has prompted a heightened focus on the dynamics of carbon storage within forest ecosystems. Remote sensing technology has emerged as the favored approach for estimating carbon storage across extensive forested regions. Leveraging hyperspectral remote sensing technology enhances the precision of forest carbon storage estimation. Consequently, this study undertook the task of hyperspectral remote sensing to estimate carbon storage within Pinus Massoniana forests and compared the results with estimates derived from Landsat TM multispectral remote sensing. The spectral attributes of Pinus Massoniana forests and their correlation with carbon storage were subjected to analysis. Subsequently, models for estimating carbon storage employing hyperspectral and multispectral remote sensing data were established. The findings indicated a significantly improved accuracy in carbon storage estimation through hyperspectral remote sensing when compared to multispectral remote sensing data. Specifically, the R-squared (R2) value for the model, based on the normalized difference vegetation index data derived from hyperspectral imagery at sensitive wavelengths, approached approximately 0.8, while the root mean square error (RMSE) was notably low at 0.968 t/hm2. Hyperspectral remote sensing data excelled in capturing nuanced spectral variations within vegetation. This capability enhances the retrieval of vital parameters such as vegetation biomass and carbon storage, as well as other biochemical characteristics. Consequently, hyperspectral remote sensing contributes substantially to the enhancement of carbon storage estimation accuracy within Pinus Massoniana forests.
-
Key words:
- hyperspectral /
- multispectral /
- Pinus Massoniana forest /
- carbon storage
-
[1] ILARI A, DUCA D, BOAKYE K A, et al. Carbon footprint and feedstock quality of a real biomass power plant fed with forestry and agricultural residues[J]. Resources, 2022, 11(2): 7. [2] SABINE C L, HEIMANN M, ARTAXO P, et al. Current status and past trends of the global carbon cycle[C]//Field C B, Raupach M R. The Global Carbon Cycle, Washington: Island Press, 2004. [3] YUE T X, WANG Y F, DU Z P, et al. Analysing the uncertainty of estimating forest carbon stocks in China[J]. Biogeosciences, 2016, 13(13): 3991-4004. [4] 涂宏涛,周红斌,马国强,等. 基于第九次森林资源清查的云南森林碳储量特征研究[J].西北林学院学报, 2023, 38(3): 185-193. [5] 蔡博峰, 朱松丽, 于胜民, 等.《IPCC 2006年国家温室气体清单指南2019修订版》解读[J]. 环境工程, 2019, 37(8): 1-11. [6] 龙依, 蒋馥根, 孙华, 等. 基于带宽优选地理加权回归模型的深圳市植被碳储量反演[J].生态学报, 2022, 42(12): 4933-4945. [7] 庞勇, 李增元, 余涛, 等. 森林碳储量遥感卫星现状及趋势[J]. 航天返回与遥感, 2022, 43(6): 1-15. [8] PANDEY P C, KOUTSIAS N, PETROPOULOS G P, et al. Land use/land cover in view of earth observation: data sources, input dimensions, and classifiers: a review of the state of the art[J]. Geocarto International, 2021, 36(9): 957-988. [9] WANG X, LI R, DING H, et al. Fine-scale improved carbon bookkeeping model using landsat time series for subtropical forest, southern China[J]. Remote Sensing, 2022, 14(3): 753. [10] 师吉红,项佳,刘健, 等. 南方红壤典型水土流失区马尾松林地上林木碳储量的遥感监测:以长汀县河田镇为例[J].生态学报, 2021, 41(6): 2151-2160. [11] UNIYAL S, PUEOHIT S, CHAURASIA K, et al. Quantification of carbon sequestration by urban forest using Landsat 8 OLI and machine learning algorithms in Jodhpur, India[J]. Urban Forestry & Urban Greening, 2022, 67(1): 1-8. [12] 黄绍霖, 徐涵秋, 林娜, 等. 亚热带地区马尾松林碳储量的遥感估算:以长汀河田盆地为例[J]. 生态学报, 2013, 33(10): 2992-3001. [13] 黄绍霖, 徐涵秋, 曾宏达, 等. 福建长汀河田盆地的马尾松林碳储量时空动态变化[J]. 地球科学—中国地质大学学报, 2013, 38(5): 1081-1090. [14] LU D S. The potential and challenge of remote sensing-based biomass estimation[J]. International Journal of Remote Sensing, 2006, 27(7): 1297-1328. [15] MUTANGA O, SKIDMORE A K. Narrow band vegetation indices overcome the saturation problem in biomass estimation[J]. International Journal of Remote Sensing, 2004, 25(19): 3999-4014. [16] 韩立立, 谢锦升, 曾宏达, 等. 百喜草治理对退化红壤生态系统碳库及分配的影响[J]. 亚热带资源与环境学报, 2013, 8(1): 33-40. [17] 李海奎, 雷渊才. 中国森林植被生物量和碳储量评估[M]. 北京: 中国林业出版社, 2010. [18] 曾帅, 况润元, 肖阳, 等. 鄱阳湖湿地植物实测高光谱数据分类[J]. 遥感信息, 2017, 32(5): 75-81. [19] CHANDER G, MARKHAM B L, HELDER D L. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors[J]. Remote Sensing of Environment, 2009, 113(5): 893-903. [20] CHO M A, SKIDMORE A K. A new technique for extracting the red edge position from hyperspectral data: The linear extrapolation method[J]. Remote Sensing of Environment, 2006, 101(2): 181-193. [21] 白丽敏, 李粉玲, 常庆瑞, 等. 结合SPA和PLS法提高冬小麦冠层全氮高光谱估算的精确度[J]. 植物营养与肥料学报, 2018, 24(5): 1178-1184. [22] ROUSE J W, HAAS R H, SCHELL J A, et al. Monitoring vegetation systems in the great plains with ERTS[C]//Third ERTS Symposium, Washington D.C.: NASA, 1973. [23] LYON J G, YUAN D, LUNETTA R S, et al. A change detection experiment using vegetation indices[J]. Photogrammetric Engineering and Remote Sensing, 1998, 64(2): 143-150. [24] HUETE A R. A soil-adjusted vegetation index (SAVI)[J]. Remote Sensing of Environment, 1988, 25(3): 295-309.
点击查看大图
计量
- 文章访问数: 46
- HTML全文浏览量: 7
- PDF下载量: 5
- 被引次数: 0