CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊
JST China 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纤维素模板改性钙基CO2吸附剂的蒸汽水合活化

吴岩 荣鼐 韩龙 刘开伟 王久衡 穆正勇 王珊珊 石秀良

吴岩, 荣鼐, 韩龙, 刘开伟, 王久衡, 穆正勇, 王珊珊, 石秀良. 纤维素模板改性钙基CO2吸附剂的蒸汽水合活化[J]. 环境工程, 2024, 42(5): 163-171. doi: 10.13205/j.hjgc.202405021
引用本文: 吴岩, 荣鼐, 韩龙, 刘开伟, 王久衡, 穆正勇, 王珊珊, 石秀良. 纤维素模板改性钙基CO2吸附剂的蒸汽水合活化[J]. 环境工程, 2024, 42(5): 163-171. doi: 10.13205/j.hjgc.202405021
WU Yan, RONG Nai, HAN Long, LIU Kaiwei, WANG Jiuheng, MU Zhengyong, WANG Shanshan, SHI Xiuliang. STEAM HYDRATION ACTIVATION OF CELLULOSE TEMPLATE MODIFIED Ca-BASED CO2 SORBENT[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(5): 163-171. doi: 10.13205/j.hjgc.202405021
Citation: WU Yan, RONG Nai, HAN Long, LIU Kaiwei, WANG Jiuheng, MU Zhengyong, WANG Shanshan, SHI Xiuliang. STEAM HYDRATION ACTIVATION OF CELLULOSE TEMPLATE MODIFIED Ca-BASED CO2 SORBENT[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(5): 163-171. doi: 10.13205/j.hjgc.202405021

纤维素模板改性钙基CO2吸附剂的蒸汽水合活化

doi: 10.13205/j.hjgc.202405021
基金项目: 

国家自然科学基金项目(51706002,51976195,52078002)

安徽省高校优秀科研创新团队(2022AH010018)

安徽省高校优秀青年科研项目(2022AH030034)

详细信息
    作者简介:

    吴岩(1999-),男,硕士研究生。wuyan@stu.ahjzu.edu.cn

    通讯作者:

    荣鼐(1988-),男,副教授,主要研究方向为钙循环CO2捕集。rongnai@ahjzu.edu.cn

STEAM HYDRATION ACTIVATION OF CELLULOSE TEMPLATE MODIFIED Ca-BASED CO2 SORBENT

  • 摘要: 采用挤出-滚圆法制备了改性钙基吸附剂颗粒,基于双固定床反应系统测试了吸附剂CO2循环捕集性能。添加质量分数5%的水泥和10%纤维素模板的吸附剂20个循环后,CO2吸附量最高为0.19 g/g。为再生其CO2捕获性能,采用不同蒸汽体积分数和温度对改性钙基吸附剂进行煅烧后单独水合活化。结果表明:体积分数30%蒸汽、300 ℃为最佳活化再生工况,20个循环后改性吸附剂的CO2吸附量为0.59 g/g。为探究水合处理对吸附剂碳酸化阶段的反应动力学影响,基于热天平进行了水合活化后吸附剂的第1、10、20次碳酸化,发现蒸汽水合活化可提升吸附剂碳酸化过程产物扩散控制阶段的反应速率。水合活化前后吸附剂颗粒的微观形貌、孔隙结构和机械性能测试结果表明,活化后吸附剂表面出现裂隙,破碎力和抗磨性能显著下降。
  • [1] IEA. Global energy review: CO2 emissions in 2022[EB/OL]. https://www.iea.org/reports/co2-emissions-in-2022, 2023-03.
    [2] 张贤, 李阳, 马乔, 等. 我国碳捕集利用与封存技术发展研究[J]. 中国工程科学, 2021(23): 70-80.
    [3] 府师敏, 陈美玲, 卢平, 等改性钙基吸附剂脱汞性能的实验研究[J]. 环境工程, 2018, 36(1): 103-107.
    [4] ZHANG X Y, LIU W Q, ZHOU S M, et, al. A review on granulation of CaO-based sorbent for carbon dioxide capture[J].Chemical Engineering Journal, 2022, 446(P2):136880.
    [5] DUNSTAN M T, DONAT F, BORK A H, et al. CO2 capture at medium to high temperature using solid oxide-based sorbents: fundamental aspects, mechanistic insights, and recent advances[J]. Chemical Reviews, 2021, 121(20): 12681-12745.
    [6] ZHAO M, HE X, JI G Z, et al. Zirconia incorporated calcium looping absorbents with superior sintering resistance for carbon dioxide capture from: in situ or ex situ processes. Sustain[J]. Energy & Fuels, 2018, 2(12): 2733-2741.
    [7] XU Y Q, DING H R, LUO C, et al. NaBr-enhanced CaO-based sorbents with a macropore-stabilized microstructure for CO2 capture[J]. Energy & Fuels, 2018, 32(8): 8571-8578.
    [8] HU Y C, LIU W Q, SUN J, et al. Structurally improved CaO based sorbent by organic acids for high temperature CO2 capture[J]. Fuel, 2016, 167: 17-24.
    [9] WANG K, GU F, CLOUGH P T, et al. CO2 capture performance of gluconic acid modified limestone dolomite mixtures under realistic conditions[J]. Energy & Fuels, 2019, 33(8): 7550-7560.
    [10] GUO H X, KOU X C, ZHAO Y J, et al. Effect of synergistic interaction between Ce and Mn on the CO2 capture of calcium-based sorbent: textural properties, electron donation, and oxygen vacancy[J]. Chemical Engineering Journal, 2018, 334: 237-246.
    [11] RONG N, WANG J H, LIU K W, et al. Enhanced CO2 capture durability and mechanical properties using cellulose-templated CaO-based pellets with steam injection during calcination[J]. Industrial & Engineering Chemistry Research, 2023, 62(3): 1533-1541.
    [12] RONG N, WU Y, WANG J H, et al. Steam reactivation of bio-templated CaO-based pellets for cyclic CO2 capture[J]. Energy & Fuels, 2021(35): 6056-6067.
    [13] ZHOU Y, CHEN Y N, LI W L, et al. High-temperature CO2 uptake and mechanical strength enhancement of the calcium aluminate cement-bound carbide slag pellets[J]. Energy & Fuels, 2021, 35(9): 8117-8125.
    [14] 梁成. 生物质模板改性钙基吸收剂颗粒循环脱碳性能研究[D]. 南京:南京师范大学, 2019.
    [15] SUN J, LIANG C, TONG X L, et al. Evaluation of high-temperature CO2 capture performance of cellulose-templated CaO-based pellets[J]. Fuel, 2019, 239: 1046-1054.
    [16] LI H L, QU M Y, YANG Y D, et al. One-step synthesis of spherical CaO pellets via novel graphite-casting method for cyclic CO2 capture[J]. Chemical Engineering Journal, 2019, 374: 619-625.
    [17] XU Y Q, DING H R, LUO C, et al. Effect of lignin, cellulose and hemicellulose on calcium looping behavior of CaO-based sorbents derived from extrusion-spherization method[J]. Chemical Engineering Journal, 2018, 334: 2520-2529.
    [18] LI H L, HU Y C, CHEN H Q et al. Porous spherical calcium aluminate-supported CaO-based pellets manufactured via biomass-templated extrusion-spheronization technique for cyclic CO2 capture[J]. Environmental Science and Pollution Research, 2019, 26(21): 21972-21982.
    [19] MA X T, LI Y J, YAN X Y, et al. Preparation of a morph-genetic CaO-based sorbent using paper fibre as a biotemplate for enhanced CO2 capture[J]. Chemical Engineering Journal, 2019, 361: 235-244.
    [20] XU Y Q, DING H R, LUO C, et al. Porous spherical calcium-based sorbents prepared by a bamboo templating method for cyclic CO2 capture[J]. Fuel, 2018, 219: 94-102.
    [21] RIDHA F N, WU Y H, MANOVIC V, et al. Enhanced CO2 capture by biomass-templated Ca(OH)2-based pellets[J]. Chemical Engineering Journal, 2015, 274: 69-75.
    [22] GONZÁLEZ B, LIU W, SULTAN D S, et al. The effect of steam on a synthetic Ca-based sorbent for carbon capture[J]. Chemical Engineering Journal, 2016, 285: 378-383.
    [23] WANG N N, FENG Y, GUO X. Insights into the role of H2O in the carbonation of CaO nanoparticle with CO2[J]. Physical Chemistry, 2018, 37(122): 21401-21410.
    [24] RONG N, WANG J H, HAN L, et al. Effect of steam addition during calcination on CO2 capture performance and strength of bio-templated Ca-based pellets[J]. Journal of CO2 Utilization, 2022(63): 1021-1027.
    [25] WANG Y, LIN S Y, SUZUKI Y. Experimental study on CO2 capture conditions of a fluidized bed limestone decomposition reactor[J]. Fuel Processing Technology, 2010, 91(8): 958-963.
    [26] LI Z H, WANG Y, XU K, et al. Effect of steam on CaO regeneration, carbonation and hydration reaction for CO2 capture[J]. Fuel Processing Technology, 2016, (151): 101-106.
    [27] RONG N, WANG Q H, FANG M X, et al. Steam hydration reactivation of CaO-based sorbent in cyclic carbonation/calcination for CO2 capture[J]. Energy & Fuels, 2013, 27: 5332-5340.
    [28] WYLLIE, PETER J, O FRANK T. The system CaO-CO2-H2O and the origin of carbonatites[J]. Journal of Petrology1, 1960: 1-46.
    [29] DONG J, TANG Y J, NZIHOU A, et al. Effect of steam addition during carbonation, calcination or hydration on re-activation of CaO sorbent for CO2 capture[J]. Journal of CO2 Utilization, 2020, 39: 101167.
    [30] 余志健, 段伦博, 苏成林, 等. 蒸汽活化水泥支撑钙基吸收剂活性及强度特性[J]. 化工学报, 2017, 68(4): 1637-1645.
    [31] 荣鼐, 樊宏韬, 王勤辉, 等. 蒸汽活化对天然钙基吸收剂循环碳酸化捕获CO2的影响[J]. 燃烧科学与技术, 2018, 3(24): 245-251.
    [32] COPPOLA A, PALLADINO L, MONTAGNARO F, et al. Reactivation by steam hydration of sorbents for fluidized-bed calcium looping[J]. Energy & Fuels, 2015, 29(7): 4436-4446.
    [33] YU Z J, DUAN L B, SU C L, et al. Effect of steam hydration on reactivity and strength of cement-supported calcium sorbents for CO2 capture[J]. Greenhouse Gases Science & Technology, 2017, 7(5): 915-926.
    [34] ANDERSON T L. Fracture Mechanics: Fundamentals and Applications[M]. Boca Raton: CRC Press, 2005.
    [35] TONG X L, LIU W Q, YANG Y D, et al. A semi-industrial preparation procedure of CaO-based pellets with high CO2 uptake performance[J]. Fuel Processing Technology, 2019, 193: 149-158.
    [36] SUN J, SUN Y, YANG Y D, et al. Plastic/rubber waste-templated carbide slag pellets for regenerable CO2 capture at elevated temperature[J]. Applied Energy, 2019, 242: 919-930.
    [37] SUN J, WANG W Y, YANG Y D, et al. Reactivation mode investigation of spent CaO-based sorbent subjected to CO2 looping cycles or sulfation[J]. Fuel, 2020, 266: 117056.
  • 加载中
计量
  • 文章访问数:  41
  • HTML全文浏览量:  7
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-13
  • 网络出版日期:  2024-07-11

目录

    /

    返回文章
    返回