CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊
JST China 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双碳战略背景下的钢渣固碳技术研究进展

刘文昊 陈庆彩 徐腾飞

刘文昊, 陈庆彩, 徐腾飞. 双碳战略背景下的钢渣固碳技术研究进展[J]. 环境工程, 2024, 42(5): 172-182. doi: 10.13205/j.hjgc.202405022
引用本文: 刘文昊, 陈庆彩, 徐腾飞. 双碳战略背景下的钢渣固碳技术研究进展[J]. 环境工程, 2024, 42(5): 172-182. doi: 10.13205/j.hjgc.202405022
LIU Wenhao, CHEN Qingcai, XU Tengfei. RESEARCH PROGRESS OF CARBON SEQUESTRATION TECHNOLOGY OF STEEL SLAG UNDER THE BACKGROUND OF DUAL CARBON STRATEGY[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(5): 172-182. doi: 10.13205/j.hjgc.202405022
Citation: LIU Wenhao, CHEN Qingcai, XU Tengfei. RESEARCH PROGRESS OF CARBON SEQUESTRATION TECHNOLOGY OF STEEL SLAG UNDER THE BACKGROUND OF DUAL CARBON STRATEGY[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(5): 172-182. doi: 10.13205/j.hjgc.202405022

双碳战略背景下的钢渣固碳技术研究进展

doi: 10.13205/j.hjgc.202405022
基金项目: 

陕西省重点研发计划(2023-YBGY-279)

详细信息
    作者简介:

    刘文昊(1999-),男,硕士,主要研究方向为碳污协同控制。l2410411258@163.com

    通讯作者:

    陈庆彩(1985-),男,教授,主要研究方向为大气污染及控制。chenqingcai@sust.edu.cn

RESEARCH PROGRESS OF CARBON SEQUESTRATION TECHNOLOGY OF STEEL SLAG UNDER THE BACKGROUND OF DUAL CARBON STRATEGY

  • 摘要: 随着工业化的不断推进,人类的生活水平得到巨大提升,在经济快速发展的同时,大量化石燃料燃烧产生的CO2被排放到大气中,加剧了全球变暖。目前,对于减少工业生产中CO2的排放,发展CO2捕集和封存技术(CCS)是行之有效的方法之一。由于钢渣巨大的固碳潜力及较低的经济成本,从经济和环境角度考虑,钢渣固碳技术前景广阔。针对钢渣固碳技术的研究现状及未来的发展进行了综述,包括钢渣的组成性质和资源化利用方式,并重点介绍了钢渣固碳技术反应机理、现存的问题及未来的发展方向。
  • [1] PIRES J C M, MARTINS F G, ALVIM-FERRAZ M C M, et al. Recent developments on carbon capture and storage: an overview[J]. Chemical Engineering Research and Design, 2011, 89(9): 1446-1460.
    [2] World Meteorological Organization.State of the Global Climate 2020[EB/OL].https://download.caixin.com/upload/1264_Statement_2020_en.pdf.
    [3] 安永碳中和课题组. 一本书读懂碳中和[M]. 北京: 机械工业出版社, 2021.
    [4] CHANG R, KIM S, LEE S, et al. Calcium carbonate precipitation for CO2 storage and utilization: a review of the carbonate crystallization and polymorphism[J]. Frontiers in Energy Research, 2017, 5: 17.
    [5] BP.Energy Outlook 2020 edition[EB/OL].https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/energy-outlook/bp-energy-outlook-2020.pdf.
    [6] 世界钢铁协会.世界钢铁统计数据2022[EB/OL].2022.https://worldsteel.org/wp-content/uploads/World-Steel-in-Figures-2022-CN.pdf.
    [7] 中国废钢铁应用协会.废钢铁产业"十四五"发展规划发布[N/OL]. 中国冶金报,2021-09-17.(www.csteelnews.com/xwzx/jrrd/202109/t20210917

    _55000.html).
    [8] 江威. 炼钢钢渣处理工艺研究与应用[J]. 科技视界, 2018(4): 228-229.
    [9] 张朝晖, 廖杰龙, 巨建涛, 等. 钢渣处理工艺与国内外钢渣利用技术[J]. 钢铁研究学报, 2013, 25(7): 1-4.
    [10] 张作顺, 徐利华, 余广炜, 等.国内钢渣处理方法及资源化利用的研究进展[C]//2010年全国能源环保生产技术会议.九江: 中国金属学会, 2010: 6.
    [11] BOBICKI R E, LIU Q X, XU Z H, et al. Carbon capture and storage using alkaline industrial wastes[J]. Progress in Energy and Combustion Science, 2012, 38(2): 302-320.
    [12] YILDIRIM I Z, PREZZI M. Chemical, mineralogical, and morphological properties of steel slag[J]. Advances in Civil Engineering, 2011, 2011: 1-13.
    [13] 王雪. 钢渣碳化潜能评估及脱硫石膏激发钢渣碳化建材的制备[D].北京: 北京科技大学, 2021.
    [14] 王新凤. 钢渣处理和综合利用探析[J].低碳世界, 2021,11(6): 305-306.
    [15] YADAV S, MEHRA A. Experimental study of dissolution of minerals and CO2 sequestration in steel slag[J]. Waste Management, 2017, 64: 348-357.
    [16] SALIMI M, GHORBANI A. Mechanical and compressibility characteristics of a soft clay stabilized by slag-based mixtures and geopolymers[J]. Applied Clay Science, 2020, 184: 1-13.
    [17] DAS S, SOULIMAN B, STONE D, et al. Synthesis and properties of a novel structural binder utilizing the chemistry of iron carbonation[J]. ACS Applied Materials & Interfaces, 2014, 6(11): 8295-8304.
    [18] SHEN D H, WU C M, DU J C. Laboratory investigation of basic oxygen furnace slag for substitution of aggregate in porous asphalt mixture[J]. Construction and Building Materials, 2009, 23(1): 453-461.
    [19] LUXAN M P, SOTOLONGO R, DORREGO F, et al. Characteristics of the slags produced in the fusion of scrap steel by electric arc furnace[J]. Cement and Concrete Research, 2000, 30(4): 517-519.
    [20] LI L F, ZHONG X Z, LING T C. Effects of accelerated carbonation and high temperatures exposure on the properties of EAFS and BOFS pressed blocks[J]. Journal of Building Engineering, 2022, 45: 103504.
    [21] MANSO J M, POLANCO J A, LOSANEZ M, et al. Durability of concrete made with EAF slag as aggregate[J]. Cement and Concrete Composites, 2006, 28(6): 528-534.
    [22] REVATHY T D R, PALANIVELU K, Ramachandran A. Direct mineral carbonation of steelmaking slag for CO2 sequestration at room temperature[J]. Environmental Science and Pollution Research, 2016, 23(8): 7349-7359.
    [23] MAHOUTIAN M, SHAO Y, MUCCI A, et al. Carbonation and hydration behavior of EAF and BOF steel slag binders[J]. Materials and Structures, 2015, 48(9): 3075-3085.
    [24] SHI C J. Steel slag—its production, processing, characteristics, and cementitious properties[J]. Civil Engineering, 2004, 16(3): 230.
    [25] TOSSAVAINEN M, ENGSTROM F, YANG Q, et al. Characteristics of steel slag under different cooling conditions[J]. Waste Management, 2007, 27(10): 1335-1344.
    [26] 孙靖婷, 谭昭君, 王江,等. 铵浸钢渣熔融还原提铁制备微晶玻璃研究[J]. 人工晶体学报,2020, 49(5):909-912.
    [27] MOON E, CHOI Y C. Development of carbon-capture binder using stainless steel argon oxygen decarburization slag activated by carbonation[J]. Cleaner Production, 2018, 180: 642-654.
    [28] 王昭然, 于巧娣, 李灿华, 等. 钢渣-锰渣复混肥的制备、结构与性能[J]. 中国冶金, 2021, 31(1): 75-80.
    [29] KANG H J, AN K G, KIM D S. Utilization of steel slag as an adsorbent of ionic lead in wastewater[J]. Journal of Environmental Science and Health, Part A-Toxic/Hazardous Substances & Environmental Engineering, 2004, 39(11/12): 3015-3028.
    [30] 于洋. 钢渣处理及资源化利用技术现状及展望[J]. 冶金动力, 2023(2): 115-118.
    [31] 赵力杰, 张芳.钢渣资源综合利用及发展前景展望[J]. 材料导报, 2020,34(增刊2): 1319-1322.
    [32] 任旭, 王会刚, 吴跃东, 等. "双碳"目标下钢渣处理及资源化利用探讨[J]. 环境工程, 2022, 40(8): 220-224.
    [33] 杨素洁, 张冰, 杨亚东, 等. 钢渣综合利用现状研究[J]. 化工矿物与加工, 2021(4): 31-34.
    [34] LACKNER K S, BUTT D P, WENDT C H. Progress on binding CO2 in mineral substrates[J]. Energy Conversion and Management, 1997, 38: S259-S264.
    [35] HUIJGEN W J J, WITKAMP G J, COMANS R N J. Mineral CO2 sequestration by steel slag carbonation[J]. Environmental Science & Technology, 2005, 39(24): 9676-9682.
    [36] TEIR S, ELONEVA S, FOGELHOLM C J, et al. Dissolution of steelmaking slags in acetic acid for precipitated calcium carbonate production[J]. Energy, 2007, 32: 528-539.
    [37] SAID A, LAUKKANEN T, JARVINEN M. Pilot-scale experimental work on carbon dioxide sequestration using steelmaking slag[J]. Applied Energy, 2016, 177: 602-611.
    [38] Baotou Steel carbonization process steel slag comprehensive utilization project phase Ⅰ 100,000 tons of demonstration industrialization project started[N/OL]. World Metal Herald, 2021, 17: A05. (https://www.worldmetals.com.cn/viscms/qiyedongtai0275/20210817/255969.html).
    [39] LIU W Z, TENG L M, ROHANI S, et al. CO2 mineral carbonation using industrial solid wastes: a review of recent developments[J]. Chemical Engineering Journal, 2021, 416: 129093.
    [40] HUIJGEN W J J, COMANS R N J, et al. Mineral CO2 sequestration by steel slag carbonation[J]. Environmental Science & Technology, 2006, 40: 2790-2796.
    [41] ZHANG Y, YU L, CUI K, et al. Carbon capture and storage technology by steel-making slags: recent progress and future challenges[J]. Chemical Engineering Journal, 2023, 455: 140552.
    [42] CHANG R, CHOI D, KIM M H, et al. Tuning crystal polymorphisms and structural investigation of precipitated calcium carbonates for CO2 mineralization[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(2): 1659-1667.
    [43] YU J, WANG K. Study on characteristics of steel slag for CO2 capture[J]. Energy & Fuels, 2011, 25(11): 5483-5492.
    [44] 白智韬, 岳昌盛, 邱桂博, 等. CO2气体对钢渣组成和性能的影响[J]. 环境工程, 2018, 36(12): 171-176.
    [45] TIAN S C, JIANG J G, LI K M, et al. Performance of steel slag in carbonation-calcination looping for CO2 capture from industrial flue gas[J]. RSC Advances, 2014, 4(14): 6858-6862.
    [46] SAID A, MATTILA O, ELONEVA S, et al. Enhancement of calcium dissolution from steel slag by ultrasound[J]. Chemical Engineering and Processing: Process Intensification, 2015, 89: 1-8.
    [47] LUO Y B, HE D F. Research status and future challenge for CO2 sequestration by mineral carbonation strategy using iron and steel slag[J]. Environmental Science and Pollution Research, 2021, 28(36): 49383-49409.
    [48] LEKAKH S N, ROBERTSON D G C, RAWLINS C H, et al. Investigation of a two-stage aqueous reactor design for carbon dioxide sequestration using steelmaking slag[J]. Metallurgical and Materials Transactions B, 2008, 39(3): 484-492.
    [49] PAN S Y, CHIANG P C, CHEN Y H, et al. Kinetics of carbonation reaction of basic oxygen furnace slags in a rotating packed bed using the surface coverage model: maximization of carbonation conversion[J]. Applied Energy, 2014, 113: 267-276.
    [50] CHANG E E, PAN S Y, CHEN Y H,et al. Accelerated carbonation of steelmaking slags in a high-gravity rotating packed bed[J]. Journal of Hazardous Materials, 2012, 227/228: 97-106.
    [51] LI H W, TANG Z G, LI N, et al. Mechanism and process study on steel slag enhancement for CO2 capture by seawater[J]. Applied Energy, 2020, 276: 115515.
    [52] LI H W, ZHANG R J, WANG T Y, et al. Performance evaluation and environment risk assessment of steel slag enhancement for seawater to capture CO2[J]. Energy, 2022, 238: 121861.
    [53] LEE Y H, EOM H, LEE S M, et al. Effects of pH and metal composition on selective extraction of calcium from steel slag for Ca(OH)2 production[J]. RSC Advances, 2021, 11(14): 8306-8313.
    [54] 唐海燕, 孟文佳, 孙绍恒, 等. 炼钢炉渣的浸出和碳酸化[J]. 北京科技大学学报, 2014, 36(增刊1): 27-31.
    [55] ELONEVA S, TEIR S, SALMINEN J, et al. Steel converter slag as a raw material for precipitation of pure calcium carbonate[J]. Industrial & Engineering Chemistry Research, 2008, 47(18): 7104-7111.
    [56] BAO W J, LI H Q, ZHANG Y. Selective leaching of steelmaking slag for indirect CO2 mineral sequestration[J]. Industrial & Engineering Chemistry Research, 2010, 49(5): 2055-2063.
    [57] 王晨晔, 包炜军, 许德华, 等. 低浓度碱介质中钢渣碳酸化反应特征[J]. 钢铁, 2016, 51(6): 87-93.
    [58] JO H, LEE M G, PARK J, et al. Preparation of high-purity nano-CaCO3 from steel slag[J]. Energy, 2017, 120: 884-894.
    [59] KODAMA S, NISHIMOTO T, YAMAMOTO N, et al. Development of a new pH-swing CO2 mineralization process with a recyclable reaction solution[J]. Energy, 2008, 33(5): 776-784.
    [60] TONG Z B, MA G J, ZHOU D, et al. The indirect mineral carbonation of electric arc furnace slag under microwave irradiation[J]. Scientific Reports, 2019, 9(1): 1-7.
    [61] 田思聪.钢渣制备高效钙基CO2吸附材料用于钢铁行业碳捕集研究[D]. 北京: 清华大学, 2016.
    [62] TIAN S C, JIANG J G, YAN F,et al. Highly efficient CO2 capture with simultaneous iron and CaO recycling for the iron and steel industry[J].Green Chemistry, 2016, 18(14): 4022-4031.
    [63] SUN J, LIU W Q, HU Y C, et al. Acidification optimization and granulation of a steel-slag-derived sorbent for CO2 capture[J]. Chemical Engineering & Technology, 2018, 41(10): 2077-2086.
    [64] 李凯敏. 钢渣制备高效钙基CO2吸附材料用于钢铁行业碳捕集研究[D]. 北京: 清华大学, 2017.
    [65] 林七女, 李志峰, 管山吉, 等. 利用高炉渣生产水合二氧化硅的研究[J]. 中国资源综合利用, 2010(6): 33-34.
    [66] LIU W Z, SONG L, XU C C, et al.Combined synthesis of Li4SiO4 sorbent with high CO2 uptake in the direct carbonation of blast furnace slag process[J].Chem Eng J, 2019, 370: 71-80.
    [67] MATTILA H P, HUDD H, ZEVENHOVEN R. Cradle-to-gate life cycle assessment of precipitated calcium carbonate production from steel converter slag[J]. Journal of Cleaner Production, 2014, 84: 611-618.
    [68] CHEN J, XING Y, WANG Y, et al. Application of iron and steel slags in mitigating greenhouse gas emissions: a review[J]. Science of the Total Environment, 2022, 844: 157041.
    [69] WANG J Y, ZHONG M, WU P F, et al. A review of the application of steel slag in CO2 fixation[J]. ChemBioEng Reviews, 2021, 8(3): 189-199.
    [70] KIM J, SOVACOOL B K, BAZILIAN M, et al. Decarbonizing the iron and steel industry: a systematic review of sociotechnical systems, technological innovations, and policy options[J]. Energy Research & Social Science, 2022, 89: 102565.
    [71] 王瑞, 颜峰, 郭荣鑫, 等. 钢渣矿物碳酸化及生命周期评估研究进展[J]. 材料导报, 2023, 37(增刊2): 282-289.
  • 加载中
计量
  • 文章访问数:  56
  • HTML全文浏览量:  5
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-08
  • 网络出版日期:  2024-07-11

目录

    /

    返回文章
    返回