A MODELING METHOD OF DIGITAL ELEVATION MODEL FOR A LARGE GARBAGE LANDFILL BASED ON LiDAR POINT CLOUD
-
摘要: 为解决无人机巡检应用于生活垃圾填埋场堆体稳定性监测的技术难点,以国内华南地区最大的兴丰垃圾填埋场为研究对象,对其进行点云数据采集,采用径向基函数、最近邻域、不规则三角网、反距离加权方法4种方法建立数字高程模型,并通过对堆体阴影图、地形相关性、等高线图、最大排水长度图的模型参数分析,比选适宜于垃圾填埋场的点云采集与建模方法。结果表明:垃圾填埋场表面覆盖有反射方向性强的树脂类覆膜,对激光雷达射线的反射有明显的方向性,对无人机的可测试范围有较强的抑制作用。50 m航线高度下,需要航线间隔≤60 m才可保障高于100点/m2的数据采集量。在覆膜坡度较大区域,需布置单独的航线。比对建模及应用效果可知:不规则三角网方法综合性能最佳,地形高程精度偏差≤2 cm,可以较好地应对地形等高线绘制、流水流迹模拟等任务。Abstract: To solve the technical difficulties of using unmanned aerial vehicle (UAV) inspection for monitoring the stability of domestic waste landfills, the largest Xingfeng landfill in South China was taken as the research object to collect point cloud data. Four methods, namely radial basis function, nearest neighbor, triangulated irregular network, and inverse distance weighting were used to establish the digital elevation model. By analyzing the model parameters of the stack shadow map, terrain correlation, contour map, and maximum drainage length map, the suitable point cloud collection and modeling method for landfill sites were studied. The research results show that the landfill’s surface is covered with resin coatings with strong reflection directionality, which has an obvious directionality for the reflection of LiDAR rays and a strong inhibitory effect on the testable range of UAV. At an altitude of 50 meters on a flight route, a distance of no more than 60 meters between flights is required to ensure a data collection volume above 100 points/m2. In areas with high film gradients, separate air routes must be arranged. Through modeling and application effect comparison, the triangulated irregular network method has the best comprehensive performance, with a terrain elevation accuracy deviation of no more than 2 cm, and can effectively handle tasks such as terrain contour drawing and water flow simulation.
-
[1] 杜洪涛.基于激光雷达的大比例地形测绘与数据联动更新技术[J]. 科技通报, 2023, 39(1): 44-48. [2] ZHENG J, YAO W, LIN X, et al. An accurate digital subsidence model for deformation detection of coal mining areas using a UAV-based LiDAR[J]. Remote Sensing, 2022, 14(2): 421. [3] LINDUP P. How radar technology will cut the cost and duration of aerial drone surveys[C]//Proceedings of the Institution of Civil Engineers-Civil Engineering. Thomas Telford Ltd, 2022, 176(1): 12-15. [4] TATSUMI S, YAMAGUCHI K, FURUYA N. ForestScanner: a mobile application for measuring and mapping trees with LiDAR-equipped iPhone and iPad[J]. Methods in Ecology and Evolution, 2023, 14(7): 1603-1609. [5] 朱育雷,倪长健,崔蕾.成都市污染边界层高度的演变特征分析[J].环境工程,2017,35(1):98-102. [6] 王道杰,陈倍,孙健辉.机载LiDAR点云密度对DEM精度的影响[J]. 测绘通报, 2022(5): 140-144. [7] 贝祎轩,陈传法,王鑫,等.机载LiDAR点云密度和插值方法对DEM及地表粗糙度精度影响分析[J]. 地球信息科学学报, 2023, 25(2): 265-276. [8] 刘巍. 机载LiDAR技术在黄河流域高精度精细DEM生产中的应用[J]. 测绘技术装备,2023,25(1):95-100. [9] YANG B S, LI J P. A hierarchical approach for refining point cloud quality of a low cost UAV LiDAR system in the urban environment[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 183: 403-421. [10] 李悦,晁会霞,辛永辉,等. 三种河流相对高程模型生成方法对比[J]. 华南地震,2023,43(1):111-120. [11] 杨朝辉,白俊武,陈志辉,等.利用遥感影像特征的城市垃圾填埋场识别及其地表温度空间变化研究[J]. 苏州科技大学学报·自然科学版,2023, 40(1): 24-33. [12] 安俞炜,张睿,杨舒,等.垃圾填埋场中汞和甲基汞环境行为研究展望[J].环境卫生工程, 2022, 30(4): 21-29. [13] 李思达,王新艳,张芳菲,等.湿地水动力研究中无人机遥感技术的应用进展、机遇与挑战[J].环境工程,2023,41(1):93-104. [14] PEREIRA G W, VALENTE D S M, QUEIROZ D M, et al. Smart-map: an open-source QGIS plugin for digital mapping using machine learning techniques and ordinary kriging[J]. Agronomy, 2022, 12(6): 1350.
点击查看大图
计量
- 文章访问数: 72
- HTML全文浏览量: 11
- PDF下载量: 6
- 被引次数: 0