ANALYSIS OF FLUE GAS CHARACTERISTICS AND PROCESS OPTIMIZATION OF CEMENT KILN CO-PROCESSING MUNICIPAL SLUDGE BASED ON ASPEN PLUS
-
摘要: 利用Aspen Plus软件建立了水泥窑协同处置市政污泥的工艺模型,定量分析污泥进料量和含水率对日产万吨熟料的生产线中烟气排放规律、分解炉炉温及煤耗的影响。结果表明:含水率60%的污泥,进料量由1 t/h增加至20 t/h,出口烟气中NO、SO2浓度分别由205.5,26.5 mg/m3变化至56.7,26.8 mg/m3;进料量10 t/h的污泥,含水率由10%提高至90%,烟气中NO由136.5 mg/m3降低到133.1 mg/m3,后又提高至134.6 mg/m3,SO2从27.4 mg/m3降低到26.2 mg/m3。以50%含水率为分界线,高含水率污泥会降低分解炉温度并增加煤耗,低含水率污泥情况则相反。结合模拟结果提出,在维持分解炉温度880~905 ℃条件下,污泥含水率控制在45%~63%,可保证污泥进料量达到20 t/h。该研究结果可为现行工艺优化方向提供参考。Abstract: In this study, a simulation model of cement kiln co-processing municipal sludge technology was developed by Aspen Plus. Based on the case that the daily production of clinker was 10000 t/d, the model aimed to analyze the effect of the changes in feed rate and sludge moisture content on flue gas emission law, the calciner’s temperature and coal consumption. The results showed that when the moisture content of sludge remained at 60%, and the feed rate of sludge ranged from 1 t/d to 20 t/d, the concentration of NO and SO2 in flue gas changed from 205.5 mg/m3 and 26.5 mg/m3 to 56.7 mg/m3 and 26.8 mg/m3, respectively. When the feed rate of sludge remained at 10 t/d, and the moisture content of sludge ranged from 10% to 90%, the concentration of NO decreased from 136.5 mg/m3 to 133.1 mg/m3 and then increased to 134.6 mg/m3, while the concentration of SO2 decreased from 27.4 mg/m3 to 26.2 mg/m3. 50% was the critical moisture content of sludge for the changes in the calciner’s temperature and coal consumption. Higher moisture content decreases the temperature and increases consumption, while the opposite is true for lower moisture content. According to simulation results, it is proposed that by maintaining the calciner temperature within the range of 880~905 ℃, the moisture content of sludge can be controlled at 45%~63%, thereby ensuring a sludge feed rate of 20 t/h. The optimized production parameters are proposed to provide a reference for current technology optimization.
-
Key words:
- Aspen Plus /
- cement kiln /
- co-processing /
- municipal sludge /
- flue gas /
- simulation
-
[1] 程运, 李伟明, 王昕晔. 水泥窑协同处置污泥技术发展现状[J]. 中国水泥, 2021(6): 87-91. [2] 俞刚, 凌梦丹, 张俊, 等. 水泥窑协同处置市政污泥技术的探索与应用[J]. 环境科技, 2017, 30(5): 36-40. [3] XIAO X, TAN J K, YUAN J K, et al. Dual role of O2 concentration on the reducing gases produced and NO reduction during sewage sludge combustion in pilot scale cement precalciner[J]. Waste Management, 2022, 137: 100-109. [4] 刘定平, 周友坤. 基于Aspen Plus水泥窑炉NOx生成仿真与减排优化研究[J]. 硅酸盐通报, 2021, 40(2): 351-358. [5] ZHANG Y, CAO S X, SHAO S, et al. Aspen Plus-based simulation of a cement calciner and optimization analysis of air pollutants emission[J]. Clean Technologies and Environmental Policy, 2011, 13(3): 459-468. [6] KÄÄNTEE U, ZEVENHOVEN R, BACKMAN R, et al. Cement manufacturing using alternative fuels and the advantages of process modelling[J]. Fuel Processing Technology, 2004, 85(4): 293-301. [7] 周友坤. 水泥窑炉掺烧污泥多污染物生成过程仿真及控制[D]. 广州: 华南理工大学, 2021. [8] RAHMAN A, RASUL M G, KHAN M M K, et al. Aspen plus based simulation for energy recovery from waste to utilize in cement plant preheater tower[J]. Energy Procedia, 2014, 61: 922-927. [9] UDARA S P R A, KOHILAN R, LAKSHAN M A L, et al. Simulation of carbon dioxide capture for industrial applications[J]. Energy Reports, 2020, 6(2): 659-663. [10] 刘楷, 朱丽, 张小军. 复合脱硫技术原理及在华润水泥生产线中的应用[J]. 中国水泥, 2017(10): 79-81. [11] 刘辉敏. 水泥生产技术基础[M]. 2版.北京: 化学工业出版社, 2016. [12] 李芳, 毕明树. 燃煤过程中NOx的生成机理及控制技术[J]. 工业锅炉, 2005(6): 32-35. [13] 王晓霞, 邱兆富, 范吉, 等. 超声波处理剩余污泥有机物、氮和磷的释放特性研究[J]. 环境污染与防治, 2009, 31(3): 66-69. [14] FANG P, TANG Z J, HUANG J H, et al. Using sewage sludge as a denitration agent and secondary fuel in a cement plant: a case study[J]. Fuel Processing Technology, 2015, 137: 1-7. [15] 杨晓阳, 王宝凤, 宋旭涛, 等. 污泥与高硫煤共水热碳化过程中硫氮形态转化规律[J]. 化工学报, 2022, 73(11): 5211-5219.
点击查看大图
计量
- 文章访问数: 84
- HTML全文浏览量: 12
- PDF下载量: 6
- 被引次数: 0