EXPERIMENTAL INVESTIGATION OF FLOATING MOTION CHARACTERISTICS OF OIL DROPLETS IN WATER
-
摘要: 油滴的上浮运动特性是水体中石油类污染物迁移转化特征研究的重要组成内容之一。对静止水体中单油滴的上浮运动过程进行研究,得到不同粒径油滴的运动轨迹、瞬时速度以及稳定状态下油滴的形状和终端速度,并分别分析了油滴粒径与形变程度、瞬时速度与运动轨迹、终端速度UT与粒径d、阻力系数CD和雷诺数Re之间的关系。研究发现,水体中油滴形状以圆球体和椭球体为主,形变随粒径增大而加剧,但整体形变程度较小;油滴运动轨迹随粒径增大由直线型逐渐向S形变化,且水平振荡幅度逐渐增大,但油滴水平振荡对油滴垂向速度的影响极小可忽略不计;UT随油滴粒径增加逐渐增至峰值,通过峰值后,UT轻微降低,而后趋于平稳;油滴CD随Re增大呈先逐渐降低至稳定后迅速增大的变化趋势。同时,基于实验数据并结合Stokes定律拟合得到1组更为精准的适用于Re<2000时油滴的CD—Re关系式。Abstract: The floating motion characteristics of oil droplets are one of the important components in the study of migration and transformation characteristics of petroleum-based pollutants in water bodies. In this paper, the upward motion of a single oil droplet in a stationary water body was studied, and the trajectories, instantaneous velocities, shapes, and terminal velocities of oil droplets of different particle sizes were obtained, then the relationships between particle size and deformation degree, instantaneous velocity and trajectory, terminal velocity UT and particle size d, drag coefficient CD and Reynolds number Re were analyzed. It was found that the shape of oil droplets in the water body was mainly spherical and ellipsoidal, the deformation increased with the increase of particle size, but the overall deformation degree was low; the trajectory of oil droplets gradually changed from linear to S-shaped with increasing particle size, while the amplitude of horizontal oscillation gradually increased, but the effect of horizontal oscillation of oil droplets on the droplet vertical velocity can be negligible; the UT gradually increased to the peak with the increase of oil droplet size, and after passing the peak, the UT decreased slightly and then tended to be stable; the CD-Re relationship tended to gradually decrease, stabilize and then rapidly increase. Meanwhile, based on the experimental data and combined with Stokes’ law, a set of CD-Re relations for silicone oil droplets at Re<2000 was obtained.
-
Key words:
- oil droplet /
- deformation /
- drag coefficient CD /
- Reynolds number Re /
- terminal velocity UT
-
[1] 代小丽,阎光绪,宋佳宇,等. 生物修复制剂在溢油污染海岸线中的应用[J]. 环境工程, 2016, 34(11): 162-165. [2] 王永林,朱曦,宋燕,等. 浅析我国溢油应急体系中应急废物的管理[J]. 环境工程, 2023, 41(增刊1): 566-569. [3] 包木太,皮永蕊,孙培艳,等. 墨西哥湾"深水地平线"溢油事故处理研究进展[J]. 中国海洋大学学报, 2015, 45(1): 55-62. [4] 鹿宏宇. 黄渤海海上溢油运动轨迹模型预测研究[D]. 大连:大连海洋大学, 2022. [5] SCARLETT A G, NELSON R K, GAGNON M M, et al. MV Wakashio grounding incident in Mauritius 2020: the world’s first major spillage of Very Low Sulfur Fuel Oil[J]. Marine Pollution Bulletin, 2021,171: 112917. [6] ZHENG L, YAPA P D. Buoyant velocity of spherical and nonspherical bubbles/droplets[J]. Journal of Hydraulic Engineering, 2000,126(11): 852-854. [7] 陈凯麟,江春波. 地表水环境影响评价数值模拟方法及应用[M]. 北京: 中国环境出版社, 2018. [8] 杜成鸿,向琪云,刘国东. 基于GMS的地下水油气井污染运移研究[J]. 环境工程, 2023, 41(增刊1): 561-565. [9] 韩龙喜,张奕,王晨芳,等. 波浪作用下沉降型憎水性污染物床面释放机理研究:以二氯甲烷为例[J]. 环境工程, 2023, 41(1): 141-148. [10] 第十四届全国水动力学学术会议暨第二十八届全国水动力学研讨会文集[M]. 北京: 海洋出版社, 2017. [11] 王晶. 海底管线溢油在水体中的运移扩散过程研究[D]. 大连:大连理工大学, 2006. [12] 肖杰. 海底管线微孔泄漏油滴尺寸与上升速度研究[D]. 大连:大连理工大学, 2007. [13] 王雪丽. 水中油滴运动实验与模拟研究[D]. 天津:河北工业大学, 2017. [14] 饶莉. 液—液分散体系中液滴的动力学行为研究[D]. 北京:北京化工大学, 2016. [15] GAO Z M, RAO L, BAO Y Y, et.al. Hydrodynamics and deformation of single drop rising in newtonian fluids[J]. Journal of Chemical Engineering of Japan, 2015, 48(5): 345-352. [16] KALMAN H, MATANA E. Terminal velocity and drag coefficient for spherical particles[J]. Powder Technology, 2022, 396: 181-190. [17] GOOSSENS W R A. Review of the empirical correlations for the drag coefficient of rigid spheres[J]. Powder Technology, 2019, 352: 350-359. [18] HADAMARD J. Mouvement permanent lent d’une sphére liquide et visqueusedans un liquide visqueux[J]. Comptes Rendus de l'Académie des Sciences, 1911, 152(25): 1735-1738. [19] RYBCZYNSKI W. Über die fortschreitende Bewegung einer flüssigen Kugel ineinem zähen Medium[J]. Bulletin International de Academie des Sciences de Cracovic, 1911, 1: 40-46. [20] STOKES S G G. On the effect of the internal friction of fluids on the motion of pendulums[J]. Transactions of the Cambridge Philosophical Society, 1850, 9(8):1-86. [21] ERVIK Å, ERIK B. The transition in settling velocity of surfactant-covered droplets from the Stokes to the Hadamard-Rybczynski solution[J]. European Journal of Mechanics/B Fluids, 2017, 66: 10-19. [22] BOND W N. LⅩⅩⅩⅡ. Bubbles and drops and Stokes’ law[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science: Series 7, 1927, 4(24): 889-898. [23] BOND W N, NEWTON D A. LⅩⅩⅩⅡ. Bubbles, drops, and Stokes law. (Paper 2)[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science: Series 7, 1928, 5(30): 794-800. [24] ELLIOTT A J. Shear diffusion and the spread of oil in the surface layers of the North Sea[J]. Deutsche Hydrografische Zeitschrift, 1986, 39: 113-137. [25] PROCTOR R, FLATHER R A, ELLIOTT A J. Modelling tides and surface drift in the Arabian Gulf—application to the Gulf oil spill[J]. Continental Shelf Research, 1994, 14(5): 531-545. [26] CLIFT R,GRACE J R,WEBER M E. Bubbles, Drops, and Particles[M]. New York: Dover Publications, 1978. [27] GONCHAROV V K, KLEMENTEVA N Y. Forecast of ecological after:effects of the oil escapes on seabed[C]//Proceedings of the Combating Marine oil Spills in Ice and Cold/Arctic Conditions Seminar, Helsinki Finland: Finnish Environment Institute, 2001: 105-112. [28] 王晶,李志军, GONCHAROV V K,等. 渤海海底管线溢油污染预测模型[J]. 海洋环境科学, 2007,26(1): 10-13. [29] JOHANSEN Ø, RYE H, COOPER C. Deepspill-field study of a simulated oil and gas blowout in deep water[J]. Spill Science & Technology Bulletin, 2003, 8(5/6): 433-443. [30] 薄宇轩,吴晅,马骏,等. 气泡在静水中上升行为特性可视化实验研究[J]. 水动力学研究与进展(A辑), 2020, 35(6): 743-749. [31] 李文强,焦守华,唐珂,等. 静水中单气泡运动特性实验研究[J]. 原子能科学技术, 2020, 54(9): 1652-1659. [32] 饶莉. 液-液分散体系中液滴的动力学行为研究[D]. 北京:北京化工大学, 2016. [33] 徐玲君,陈刚,邵建斌,等. 不同直径气泡在静水中运动特性的研究[J]. 水动力学研究与进展A辑, 2012, 27(5): 582-588. [34] HU S, KINTNER R C. The fall of single liquid drops through water[J]. AIChE Journal, 1955, 1(1): 42-48. [35] KLEE A J, TREYBAL R E. Rate of rise or fall of liquid drops[J]. AIChE Journal, 1956, 2(4): 444-447. [36] LAPPLE C E, SHEPHERD C B. Calculation of particle trajectories[J]. Industrial and Engineering Chemistry, 1940, 32(5): 605-617.
点击查看大图
计量
- 文章访问数: 441
- HTML全文浏览量: 64
- PDF下载量: 70
- 被引次数: 0