CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊
JST China 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

精炼渣-粉煤灰基地聚合物固化重金属(Zn、Cd)机制研究

刘伟 伊元荣 李春辉 李洁 迪娜·加阿拜

刘伟, 伊元荣, 李春辉, 李洁, 迪娜·加阿拜. 精炼渣-粉煤灰基地聚合物固化重金属(Zn、Cd)机制研究[J]. 环境工程, 2024, 42(6): 127-135. doi: 10.13205/j.hjgc.202406015
引用本文: 刘伟, 伊元荣, 李春辉, 李洁, 迪娜·加阿拜. 精炼渣-粉煤灰基地聚合物固化重金属(Zn、Cd)机制研究[J]. 环境工程, 2024, 42(6): 127-135. doi: 10.13205/j.hjgc.202406015
LIU Wei, YI Yuanrong, LI Chunhui, LI Jie, DINA Jaabay. MECHANISM OF SOLIDIFICATION OF HEAVY METALS (Zn, Cd) BY LADLE FURNACE SLAG-FLY ASH BASED GEOPOLYMERS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(6): 127-135. doi: 10.13205/j.hjgc.202406015
Citation: LIU Wei, YI Yuanrong, LI Chunhui, LI Jie, DINA Jaabay. MECHANISM OF SOLIDIFICATION OF HEAVY METALS (Zn, Cd) BY LADLE FURNACE SLAG-FLY ASH BASED GEOPOLYMERS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(6): 127-135. doi: 10.13205/j.hjgc.202406015

精炼渣-粉煤灰基地聚合物固化重金属(Zn、Cd)机制研究

doi: 10.13205/j.hjgc.202406015
基金项目: 

新疆自然科学基金资助项目(2022D01C388)

详细信息
    作者简介:

    刘伟(1999-),女,硕士,主要从事固废资源化利用研究。1498542074@qq.com

    通讯作者:

    伊元荣(1974-),女,博士,教授,主要从事固体废弃物处理与资源化利用研究。yyrhyw@163.com

MECHANISM OF SOLIDIFICATION OF HEAVY METALS (Zn, Cd) BY LADLE FURNACE SLAG-FLY ASH BASED GEOPOLYMERS

  • 摘要: 为改善重金属污染,提高固体废弃物利用率,以精炼渣(LFS)和粉煤灰(FA)为原料,氢氧化钠与水玻璃作为碱激发剂,在碱激发条件下制备地质聚合物固化重金属Zn2+、Cd2+。研究Zn2+、Cd2+掺量对固化体强度的影响,通过浸出实验评价地质聚合物对Zn2+、Cd2+的固定效果,结合XRD、SEM-EDS、FT-IR、XPS等表征方法对固定机制进行研究。结果表明:精炼渣-粉煤灰基地质聚合物与Zn2+、Cd2+具有良好的相容性,含有1.0% Cd2+固化体28 d的抗压强度可达到40.62 MPa,水化浸出实验中Zn2+、Cd2+固化率均在99.6%以上;Zn2+、Cd2+加入后固化体中不会有新相生成,且在固化过程中未发生化学价态变化。金属离子能有效地固定在精炼渣基地质聚合物中,主要通过物理包封、吸附作用,少量重金属离子则是通过化学键合,以Si—O—M和Al—O—M (M=Zn、Cd)的形式存在于固化体中。
  • [1] ZHAO S Z, WEN Q, ZHANG X Y, et al. Migration, transformation and solidification/stabilization mechanisms of heavy metals in glass-ceramics made from MSWI fly ash and pickling sludge[J]. Ceramics International, 2021, 47(15): 21599-21609.
    [2] WANG S Y, LIU B, ZHANG Q, et al. Application of geopolymers for treatment of industrial solid waste containing heavy metals: state-of-the-art review[J]. Journal of Cleaner Production, 2023, 390: 136053.
    [3] JI Z H, PEI Y S. Bibliographic and visualized analysis of geopolymer research and its application in heavy metal immobilization: a review[J]. Journal of Environmental Management, 2019, 231: 256-267.
    [4] DAVIDOVITS J. Geopolymers and geopolymeric materials[J]. Journal of Thermal Analysis, 1989, 35: 429-441.
    [5] ZHANG Y J, HAN Z C, HE P Y, et al. Geopolymer-based catalysts for cost-effective environmental governance: a review based on source control and end-of-pipe treatment[J]. Journal of Cleaner Production, 2020, 263: 121556.
    [6] ZHANG X L, YAO A L, CHEN L. A review on the immobilization of heavy metals with geopolymers[J]. Advanced Materials Research, 2013, 634/635/636/637/638: 173-177.
    [7] 徐硕, 杨金林, 马少健. 粉煤灰综合利用研究进展[J]. 矿产保护与利用, 2021, 41(3): 104-111.
    [8] YI Y R, MA W Q, SIDIKE A, et al. Synergistic effect of hydration and carbonation of ladle furnace slag on cementitious substances[J]. Scientific Reports, 2022, 12(1): 14526.
    [9] BOUABIDI Z B, EL-NAAS M H, CORTES D, et al. Steel-Making dust as a potential adsorbent for the removal of lead (Ⅱ) from an aqueous solution[J]. Chemical Engineering Journal, 2018, 334: 837-844.
    [10] JIN F, AL-TABBAA A. Evaluation of novel reactive MgO activated slag binder for the immobilisation of lead and zinc[J]. Chemosphere, 2014, 117: 285-294.
    [11] WAN Q, RAO F, SONG S X, et al. Immobilization forms of ZnO in the solidification/stabilization (S/S) of a zinc mine tailing through geopolymerization[J]. Journal of Materials Research and Technology, 2019, 8(6): 5728-5735.
    [12] WANG L, GEDDES D A, WALKLEY B, et al. The role of zinc in metakaolin-based geopolymers[J]. Cement and Concrete Research, 2020, 136: 106194.
    [13] IZQUIERDO M, QUEROL X, DAVIDOVITS J, et al. Coal fly ash-slag-based geopolymers: microstructure and metal leaching[J]. Journal of Hazardous Materials, 2009, 166(1): 561-566.
    [14] LI J, LI J X, WEI H, et al. Alkaline-thermal activated electrolytic manganese residue-based geopolymers for efficient immobilization of heavy metals[J]. Construction and Building Materials, 2021, 298: 123853.
    [15] EL-ESWED B I, YOUSEF R I, ALSHAAER M, et al. Stabilization/solidification of heavy metals in kaolin/zeolite based geopolymers[J]. International Journal of Mineral Processing, 2015, 137: 34-42.
    [16] JI Z, PEI Y. Immobilization efficiency and mechanism of metal cations (Cd2+, Pb2+ and Zn2+) and anions (AsO3-4 and Cr2O2-7) in wastes-based geopolymer[J]. Journal of Hazardous Materials, 2020, 384: 121290.
    [17] 国家市场监督管理总局,国家标准化管理委员会. 水泥胶砂强度检验方法(ISO法):GB/T 17671—2021[S].北京:中国标准化出版社.
    [18] 国家环境保护总局, 国家质量监督检验检疫总局. 危险废物鉴别标准浸出毒性鉴别:GB 5085.3—2007[S].北京:中国环境科学出版社,2007.
    [19] 环境保护部. 固体废物 浸出毒性浸出方法 水平振荡法:HJ 557—2010[S]. 北京:中国环境科学出版社,2010.
    [20] ALVAREZ-AYUSO E, QUEROL X, PLANA F, et al. Environmental, physical and structural characterisation of geopolymer matrixes synthesised from coal (co-)combustion fly ashes[J]. 2008, 154(1/2/3): 175-183.
    [21] 王云燕, 柴立元, 王庆伟, 等. 重金属离子(Zn2+, Cu2+, Cd2+, Pb2+)-水系羟合配离子配位平衡研究[C]//2008年全国湿法冶金学术会议, 2008: 196-204.
    [22] WANG Y, HAN F, MU J. Solidification/stabilization mechanism of Pb(Ⅱ), Cd(Ⅱ), Mn(Ⅱ) and Cr(Ⅲ) in fly ash based geopolymers[J]. Construction and Building Materials, 2018, 160: 818-827.
    [23] DERMATAS D, MENG X. Utilization of fly ash for stabilization/solidification of heavy metal contaminated soils[J]. Engineering Geology, 2003, 70(3/4): 377-394.
    [24] CHEN Q Y, TYRER M, HILLS C D, et al. Immobilisation of heavy metal in cement-based solidification/stabilisation: a review[J]. Waste Management, 2009, 29(1): 390-403.
    [25] WANG D, WANG Q. Clarifying and quantifying the immobilization capacity of cement pastes on heavy metals[J]. Cement and Concrete Research, 2022, 161:106945.
    [26] ZHENG L, WANG W, QIAO W, et al. Immobilization of Cu2+, Zn2+, Pb2+, and Cd2+ during geopolymerization[J]. Frontiers of Environmental Science & Engineering, 2015, 9(4): 642-648.
    [27] THO-IN T, SATA V, BOONSERM K, et al. Compressive strength and microstructure analysis of geopolymer paste using waste glass powder and fly ash[J]. Journal of Cleaner Production, 2018, 172: 2892-2898.
    [28] SWANEPOEL J C, STRYDOM C A. Utilisation of fly ash in a geopolymeric material[J]. Applied Geochemistry, 2002, 17(8): 1143-1148.
    [29] BOUAISSI A, LI L Y, ABDULLAH M M A B, et al. Mechanical properties and microstructure analysis of FA-GGBS-HMNS based geopolymer concrete[J]. Construction and Building Materials, 2019, 210(20): 198-209.
    [30] HUANG X, HUANG T, LI S, et al. Immobilization of chromite ore processing residue with alkali-activated blast furnace slag-based geopolymer[J]. Ceramics International, 2016, 42(8): 9538-9549.
    [31] JI Z, PEI Y. Geopolymers produced from drinking water treatment residue and bottom ash for the immobilization of heavy metals[J]. Chemosphere, 2019, 225: 579-587.
    [32] XINLIANG H, SHENBO Z, XIAOYING L, et al. FT-IR analysis of polymerization degree of different origin slag[J]. Cement Engineering, 2013,(1):23-26.
    [33] ANDINI S, CIOFFI R, COLANGELO F, et al. Coal fly ash as raw material for the manufacture of geopolymer-based products[J]. Waste Management, 2008, 28(2): 416-423.
    [34] CHEN Y, CHEN F, ZHOU F, et al. Early solidification/stabilization mechanism of heavy metals (Pb, Cr and Zn) in Shell coal gasification fly ash based geopolymer[J]. Science of the Total Environment, 2022, 802: 149905.
    [35] BARSBAY M, KAVAKLı P A, TILKI S, et al. Porous cellulosic adsorbent for the removal of Cd (Ⅱ), Pb(Ⅱ) and Cu(Ⅱ) ions from aqueous media[J]. Radiation Physics and Chemistry, 2018, 142: 70-76.
    [36] GUO X, ZHANG L, HUANG J, et al. Detoxification and solidification of heavy metal of chromium using fly ash-based geopolymer with chemical agents[J]. Construction and Building Materials, 2017, 151: 394-404.
    [37] WAN J, ZHANG F, HAN Z, et al. Adsorption of Cd2+ and Pb2+ by biofuel ash-based geopolymer synthesized by one-step hydrothermal method[J]. Arabian Journal of Chemistry, 2021, 14(8): 103234.
    [38] GUO B, PAN D A, LIU B, et al. Immobilization mechanism of Pb in fly ash-based geopolymer[J]. Construction and Building Materials, 2017, 134: 123-130.
  • 加载中
计量
  • 文章访问数:  27
  • HTML全文浏览量:  3
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-27
  • 网络出版日期:  2024-07-11

目录

    /

    返回文章
    返回