POLLUTION SITUATION AND RISK ASSESSMENT OF MICROPLASTICS IN AGRICULTURAL SOIL IN WUHAN
-
摘要: 土壤是塑料垃圾和微塑料的污染汇,研究农田土壤中微塑料污染状况和生态风险,可为土壤微塑料污染治理提供基础数据和理论依据。采集武汉市不同区域的大棚菜田土壤样品,通过尼罗红荧光染色法和拉曼光谱法对土壤中微塑料进行定量和定性分析,发现武汉市菜田耕作层土壤中微塑料丰度均值为(2938.9±1637.5)个/kg(以干重计),且以纤维和碎片形态为主;聚乙烯(PE)和聚丙烯(PP)是主要的聚合物类型,且二者显著正相关;采样区不同深度的微塑料具有形态和类型上的相似性;污染物负荷指数法评估风险显示所有采样区域风险等级均为Ⅰ类,采用风险指数法和潜在风险指数法评估,发现有聚氯乙烯(PVC)检出的采样点位风险较高,未来需要建立标准化的模型来评估微塑料的生态风险。Abstract: Soil serves as a significant sink for plastic waste and microplastics. Investigating the pollution status and ecological risks of microplastics in agricultural soil can provide fundamental data and theoretical support for the management of soil microplastic pollution. In this study, soil samples were collected from greenhouse vegetable fields in different regions of Wuhan. Microplastics in the soil were quantitatively and qualitatively analyzed using the Nile Red fluorescence staining method and Raman spectroscopy. The results revealed an average abundance of microplastics in the cultivated layer soil of vegetable fields in Wuhan to be (2938.9±1637.5) particles per kilogram of dry weight (n/kg dw), predominantly in the form of fibers and fragments. Polyethylene (PE) and polypropylene (PP) were identified as the main polymer types, exhibiting a significant positive correlation. Microplastics at different depths in the sampling areas showed similarities in morphology and types. The risk assessment using the pollution load index method indicated a risk level of Class I for all sampled regions. However, the risk assessment using the risk index and potential risk index methods revealed higher risks at sampling points where polyvinyl chloride (PVC) was detected, suggesting the need for standardized models in the future to assess the ecological risks of microplastics.
-
Key words:
- microplastics /
- vegetable soil /
- pollution situation /
- risk assessment ecological
-
[1] 吕一涵, 周杰, 杨亚东, 等. 微塑料对农田生态系统的影响:研究现状与展望[J]. 中国生态农业学报, 2022, 30(1): 1-14. [2] 侯军华, 檀文炳, 余红, 等. 土壤环境中微塑料的污染现状及其影响研究进展[J]. 环境工程, 2020, 38(2): 16-27. [3] LI C C, WANG L F, JI S P, et al. The ecology of the plastisphere: microbial composition, function, assembly, and network in the freshwater and seawater ecosystems[J]. Water Research, 2021, 202: 117428. [4] HORTON A A, WALTON A, SPURGEON D J, et al. Microplastics in freshwater and terrestrial environments: evaluating the current understanding to identify the knowledge gaps and future research priorities[J]. Science of the Total Environment, 2017, 586: 127-141. [5] YANG L, ZHANG Y L, KANG S C, et al. Microplastics in soil: a review on methods, occurrence, sources, and potential risk[J]. Science of the Total Environment, 2021, 780: 146546. [6] 李鹏飞, 侯德义, 王刘炜, 等. 农田中的(微)塑料污染:来源、迁移、环境生态效应及防治措施[J]. 土壤学报, 2021, 58(2): 314-330. [7] 陈满英, 喻乔, 张太平. 土壤环境中微塑料污染及迁移转化规律研究进展[J]. 生态科学, 2021, 40(4): 202-211. [8] 刘超, 张晓然, 刘俊峰, 等. 塑料制品中微塑料的释放行为及在环境中的迁移规律研究进展[J]. 环境工程, 2022, 40(5): 205-217. [9] 龚玉龙, 张晓斐, 马宗斌, 等. 微塑料的复合毒性研究进展[J]. 广东化工, 2022, 49(20): 84-86. [10] 刘海朱, 白军红, 王亚琪, 等. 基于CiteSpace文献计量的沉积物微塑料研究进展与热点分析[J]. 环境工程, 2023, 41(1): 42-50. [11] 杨扬, 何文清. 农田土壤微塑料污染现状与进展[J]. 环境工程, 2021, 39(5): 156-164. [12] HUANG Y, LIU Q, JIA W Q, et al. Agricultural plastic mulching as a source of microplastics in the terrestrial environment[J]. Environmental Pollution, 2020, 260: 114096. [13] 武汉市统计局, 国家统计局武汉调查队. 武汉统计年鉴[M]. 北京:中国统计出版社,2022. [14] NUELLE M T, DEKIFF J H, REMY D, et al. A new analytical approach for monitoring microplastics in marine sediments[J]. Environmental Pollution, 2014, 184: 161-169. [15] 李雯星, 吴亚梅, 王康, 等. 典型土壤中微塑料的测定方法研究[J]. 生态与农村环境学报, 2023, 39(5): 568-575. [16] 张耀丹, 李欣桐, 李永, 等. 淡水环境沉积物中微塑料的密度分离方法研究[J]. 中国环境监测, 2022, 38(2): 1-7. [17] PRATA J C, DA COSTA J P, FERNANDES A J S, et al. Selection of microplastics by Nile Red staining increases environmental sample throughput by micro-Raman spectroscopy[J]. Science of the Total Environment, 2021, 783: 146979. [18] DONG M T, ZHANG Q Q, XING X L, et al. Raman spectra and surface changes of microplastics weathered under natural environments[J]. Science of the Total Environment, 2020, 739: 139990. [19] XU P, PENG G Y, SU L, et al. Microplastic risk assessment in surface waters: a case study in the Changjiang Estuary, China[J]. Marine Pollution Bulletin, 2018, 133: 647-654. [20] LITHNER D, LARSSON A, DAVE G. Environmental and health hazard ranking and assessment of plastic polymers based on chemical composition[J]. Science of the Total Environment, 2011, 409(18): 3309-3324. [21] LI R L, YU L Y, CHAI M W, et al. The distribution, characteristics and ecological risks of microplastics in the mangroves of Southern China[J]. Science of the Total Environment, 2020, 708: 135025. [22] CHEN Y L, LENG Y F, LIU X N, et al. Microplastic pollution in vegetable farmlands of suburb Wuhan, central China[J]. Environmental Pollution, 2020, 2577: 113449. [23] ZHOU Y F, LIU X N, WANG J. Characterization of microplastics and the association of heavy metals with microplastics in suburban soil of central China[J]. Science of the Total Environment, 2019, 694: 133798. [24] YU L, ZHANG J D, LIU Y, et al. Distribution characteristics of microplastics in agricultural soils from the largest vegetable production base in China[J]. Science of the Total Environment, 2021, 756: 143860. [25] 宋宁宁, 李梦佳, 王学霞, 等. 覆膜年限和有机肥施用对花生田耕层土壤微塑料赋存特征的影响[J]. 环境科学,2024,45(3): 1684-1691. [26] ZHANG Y, WANG K, CHEN W Z, et al. Effects of land use and landscape on the occurrence and distribution of microplastics in soil, China[J]. Science of the Total Environment, 2022, 847: 157598. [27] LI J, SONG Y, CAI Y B. Focus topics on microplastics in soil: analytical methods, occurrence, transport, and ecological risks[J]. Environmental Pollution, 2020, 257: 113570. [28] 宋小卫, 吴晓凤, 宋小平, 等. 微塑料的提取分离方法研究进展[J]. 环境化学, 2022, 41(3): 793-800. [29] RAZEGHI N, HAMIDIAN A H, MIRZAJANI A, et al. Sample preparation methods for the analysis of microplastics in freshwater ecosystems: a review[J]. Environmental Chemistry Letters, 2022,20: 417-443. [30] CHEN J X, WANG W M, LIU H, et al. A review on the occurrence, distribution, characteristics, and analysis methods of microplastic pollution in ecosystem s[J]. Environmental Pollutants and Bioavailability, 2021, 33(1): 227-246. [31] LENZ R, ENDERS K, STEDMON C A, et al. A critical assessment of visual identification of marine microplastic using Raman spectroscopy for analysis improvement[J]. Marine Pollution Bulletin, 2015, 100(1): 82-91. [32] SHIM W J, SONG Y K, HONG S H, et al. Identification and quantification of microplastics using Nile Red staining[J]. Marine Pollution Bulletin, 2016, 113(1/2): 469-476. [33] RENNER G, SCHMIDT T C, SCHRAM J. Analytical methodologies for monitoring micro(nano)plastics: which are fit for purpose?[J]. Current Opinion in Environmental Science & Health, 2018, 1: 55-61. [34] ERNI-CASSOLA G, GIBSON M I, THOMPSON R C, et al. Lost, but found with Nile Red: a novel method for detecting and quantifying small microplastics (1 mm to 20 μm) in environmental samples[J]. Environmental Science & Technology, 2017, 51(23): 13641-13648. [35] NAVA V, FREZZOTTI M L, LEONI B. Raman spectroscopy for the analysis of microplastics in aquatic systems[J]. Applied Spectroscopy, 2021, 75(11): 1341-1357. [36] LV L L, QU J H, YU Z H, et al. A simple method for detecting and quantifying microplastics utilizing fluorescent dyes-Safranine T, fluorescein isophosphate, Nile red based on thermal expansion and contraction property[J]. Environmental Pollution, 2019, 255: 113283. [37] 马贵, 丁家富, 周悦, 等. 固原市农田土壤微塑料的分布特征及风险评估[J]. 环境科学,2023,44(9): 5055-5062. [38] LIU M T, LU S B, SONG Y, et al. Microplastic and mesoplastic pollution in farmland soils in suburbs of Shanghai, China[J]. Environmental Pollution, 2018, 242: 855-862. [39] O’CONNOR D, PAN S Z, SHEN Z T, et al. Microplastics undergo accelerated vertical migration in sand soil due to small size and wet-dry cycles[J]. Environmental Pollution, 2019, 249: 527-534. [40] RILLIG M C, ZIERSCH L, HEMPEL S. Microplastic transport in soil by earthworms[J]. Scientific Reports, 2017, 7:1362. [41] STEINMETZ Z, WOLLMANN C, SCHAEFER M, et al. Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation?[J]. Science of the Total Environment, 2016, 550: 690-705. [42] ZHANG Z Y, SHENG L T, YANG J, et al. Effects of land use and slope gradient on soil erosion in a red soil hilly watershed of Southern China[J]. Sustainability, 2015, 7(10): 14309-14325. [43] ZHANG G S, LIU Y F. The distribution of microplastics in soil aggregate fractions in southwestern China[J]. Science of the Total Environment, 2018, 642: 12-20. [44] FENG S S, LU H W, TIAN P P, et al. Analysis of microplastics in a remote region of the Tibetan Plateau: implications for natural environmental response to human activities[J]. Science of the Total Environment, 2020, 739:140087. [45] LI J L, PENG D, OUYANG Z Z, et al. Occurrence status of microplastics in main agricultural areas of Xinjiang Uygur Autonomous Region, China[J]. Science of the Total Environment, 2022, 828:154259. [46] DRIS R, GASPERI J, SAAD M, et al. Synthetic fibers in atmospheric fallout: a source of microplastics in the environment?[J]. Marine Pollution Bulletin, 2016, 104(1/2): 290-293. [47] CAI L Q, WANG J D, PENG J P, et al. Characteristic of microplastics in the atmospheric fallout from Dongguan city, China: preliminary research and first evidence[J]. Environmental Science and Pollution Research, 2017, 24(32): 24928-24935. [48] RILLIG M C. Microplastic in terrestrial ecosystems and the soil?[Z]. ACS Publications. 2012. [49] SUNDT P, SCHULZE P E, SYVERSEN F. Sources of microplastic-pollution to the marine environment[J]. Mepex for the Norwegian Environment Agency, 2014, 86: 20. [50] SONG Y K, HONG S H, JANG M, et al. Combined effects of UV exposure duration and mechanical abrasion on microplastic fragmentation by polymer type[J]. Environmental Science & Technology, 2017, 51(8): 4368-4376. [51] WAGNER S, HUFFER T, KLOCKNER P, et al. Tire wear particles in the aquatic environment: a review on generation, analysis, occurrence, fate and effects[J]. Water Research, 2018, 139: 83-100. [52] 王金花, 李冰, 侯宇晴, 等. 农田土壤中微塑料的赋存、迁移及生态效应研究进展[J]. 农业环境科学学报, 2023, 42(5): 951-965. [53] ZHANG Z Y, ZULPIYA M, WANG P W. Occurrence and sources of microplastics in dust of the Ebinur lake Basin, northwest China[J]. Environmental Geochemistry and Health, 2023, 45:1461-1474. [54] 赵长民, 和兵, 李和通, 等. 汜水河(荥阳段)入河排污口水体微塑料赋存特征及风险评估[J]. 环境科学,2024,45(3): 1457-1467. [55] 修文洁, 闫淼, 顾冀海, 等. 微塑料PVC与磺胺甲恶唑联合暴露大型溞引发的急慢性毒理效应[J]. 水生生物学报,2024,48(3): 413-425. [56] 刘晓东. 石河子市微塑料污染特征及其生态风险评价[D]. 石河子:石河子大学, 2022. [57] 王志超, 孟青, 于玲红, 等. 内蒙古河套灌区农田土壤中微塑料的赋存特征[J]. 农业工程学报, 2020, 36(3): 204-209. [58] 张雅珊, 陈宗耀, 马伟芳. 微塑料的迁移转化及其生态风险研究进展[J]. 化工进展, 2022, 41(11): 6080-6098. [59] de RUIJTER V N, REDONDO-HASSELERHARM P E, GOUIN T, et al. Quality criteria for microplastic effect studies in the context of risk assessment: a critical review[J]. Environmental Science & Technology, 2020, 54(19): 11692-11705. [60] KOELMANS A A, REDONDO-HASSELERHARM P E, NOR N H M, et al. Risk assessment of microplastic particles[J]. Nature Reviews Materials, 2022, 7(2): 138-152.
点击查看大图
计量
- 文章访问数: 77
- HTML全文浏览量: 17
- PDF下载量: 5
- 被引次数: 0