中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于RetinaNet的可回收垃圾有向目标检测

张铮 邱达河 金子博 薛波 胡新宇

张铮, 邱达河, 金子博, 薛波, 胡新宇. 基于RetinaNet的可回收垃圾有向目标检测[J]. 环境工程, 2024, 42(6): 160-168. doi: 10.13205/j.hjgc.202406019
引用本文: 张铮, 邱达河, 金子博, 薛波, 胡新宇. 基于RetinaNet的可回收垃圾有向目标检测[J]. 环境工程, 2024, 42(6): 160-168. doi: 10.13205/j.hjgc.202406019
ZHANG Zheng, QIU Dahe, JING Zibo, XUE Bo, HU Xinyu. RETINANET-BASED DIRECTED TARGET DETECTION FOR RECYCLABLE WASTE[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(6): 160-168. doi: 10.13205/j.hjgc.202406019
Citation: ZHANG Zheng, QIU Dahe, JING Zibo, XUE Bo, HU Xinyu. RETINANET-BASED DIRECTED TARGET DETECTION FOR RECYCLABLE WASTE[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(6): 160-168. doi: 10.13205/j.hjgc.202406019

基于RetinaNet的可回收垃圾有向目标检测

doi: 10.13205/j.hjgc.202406019
基金项目: 

国家自然科学基金项目(61976083)

详细信息
    作者简介:

    张铮(1970-),男,博士,教授,主要从事机器视觉、自动控制研究。271998085@qq.com

    通讯作者:

    邱达河(1999-),男,硕士研究生,主要从事机器视觉、深度学习研究。torres_21@163.com

RETINANET-BASED DIRECTED TARGET DETECTION FOR RECYCLABLE WASTE

  • 摘要: 可回收垃圾分拣是垃圾处理厂的重要工作,目前人工垃圾分拣效率低,工作环境恶劣,分拣成本高,为实现垃圾分拣的自动化,基于视觉的可回收垃圾自动检测研究具有重要意义。针对传统的水平框目标检测算法在检测时易丢失目标的方向信息,定位框重合现象严重,无法获取目标真实长宽,不利于后续分拣的缺点,提出基于RetinaNet的有向目标检测算法,该算法基于RetinaNet网络进行改进,在检测头中添加角度预测模块,使用PSC角度编码器改善角度回归边界问题,引入Balanced L1 loss损失函数平衡简单样本和困难样本的梯度贡献,替换骨干网络为Swin Transformer以增强网络特征提取能力。带角度预测的网络,能更准确地定位垃圾,改进后的网络精度(mAP)达到78.4%,比原算法提高了12百分点,同时与其他角度编码器相比PSC的检测效果均优于其他方法。
  • [1] ZHU C X,QIAN J C,WANG B R. YOLOX on embedded device with CCTV & TensorRT for intelligent multicategories garbage identification and classification[J]. IEEE Sensors Journal,2022,22(16):16522-16532.
    [2] CAI X,SHUANG F,SUN X,et al. Towards lightweight neural networks for garbage object detection[J]. Sensors,2022,22(19):7455.
    [3] 韦波,张衡,王斐,等.基于Faster R-CNN的海面垃圾检测研究[J].环境工程,2022,40(7):153-158.
    [4] 赵珊,刘子路,郑爱玲,等.基于MobileNetV2和IFPN改进的SSD垃圾实时分类检测方法[J].计算机应用,2022,42(增刊1):106-111.
    [5] MA J,SHAO W,YE H,et al. Arbitrary-oriented scene text detection via rotation proposals[J]. IEEE Transactions on Multimedia,2018,20(11):3111-3122.
    [6] YANG X,YAN J,FENG Z,et al. R3det:refined single-stage detector with feature refinement for rotating object[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2021,35(4):3163-3171.
    [7] DING J,XUE N,LONG Y,et al. Learning RoI transformer for oriented object detection in aerial images[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019:2849-2858.
    [8] XU Y,FU M,WANG Q,et al. Gliding vertex on the horizontal bounding box for multi-oriented object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2020,43(4):1452-1459.
    [9] YANG X,YAN J. Arbitrary-oriented object detection with circular smooth label[C]//Computer Vision-ECCV 2020:16th European Conference,Glasgow,UK,August 23-28,2020,Proceedings,Part Ⅷ 16. Springer International Publishing,2020:677-694.
    [10] YANG X,YANG X,YANG J,et al. Learning high-precision bounding box for rotated object detection via kullback-leibler divergence[J]. Advances in Neural Information Processing Systems,2021,34:18381-18394.
    [11] YU Y,DA F. Phase-shifting coder:Predicting accurate orientation in oriented object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023:13354-13363.
    [12] LIN T Y,GOYAL P,GIRSHICK R,et al. Focal loss for dense object detection[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017:2980-2988.
    [13] LIU Z,LIN Y,CAO Y,et al. Swin Transformer:hierarchical vision transformer using shifted windows[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021:10012-10022.
    [14] PANG J,CHEN K,SHI J,et al. Libra r-cnn:towards balanced learning for object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019:821-830.
    [15] LIN T Y,DOLLAR P,GIRSHICK R,et al. Feature pyramid networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017:2117-2125.
    [16] DOSOVITSKIY A,BEYER L,KOLESNIKOV A,et al. An image is worth 16x16 words:Transformers for image recognition at scale[J]. ArXiv Preprint ArXiv:2010.11929,2020.
    [17] LIN T Y,GOYAL P,GIRSHICK R,et al. Focal loss for dense object detection[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017:2980-2988.
    [18] YUDIN D,ZAKHARENKO N,SMETANIN A,et al. Hierarchical waste detection with weakly supervised segmentation in images from recycling plants[J]. Available at SSRN 4183424.
    [19] RUSSAKOVSKY O,DENG J,SU H,et al. Imagenet large scale visual recognition challenge[J]. International Journal of Computer Vision,2015,115(3):211-252.
    [20] XIA G S,BAI X,DING J,et al. DOTA:a large-scale dataset for object detection in aerial images[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018:3974-3983.
  • 加载中
计量
  • 文章访问数:  74
  • HTML全文浏览量:  17
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-24
  • 网络出版日期:  2024-07-11

目录

    /

    返回文章
    返回