CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊
JST China 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于RetinaNet的可回收垃圾有向目标检测

张铮 邱达河 金子博 薛波 胡新宇

张铮, 邱达河, 金子博, 薛波, 胡新宇. 基于RetinaNet的可回收垃圾有向目标检测[J]. 环境工程, 2024, 42(6): 160-168. doi: 10.13205/j.hjgc.202406019
引用本文: 张铮, 邱达河, 金子博, 薛波, 胡新宇. 基于RetinaNet的可回收垃圾有向目标检测[J]. 环境工程, 2024, 42(6): 160-168. doi: 10.13205/j.hjgc.202406019
ZHANG Zheng, QIU Dahe, JING Zibo, XUE Bo, HU Xinyu. RETINANET-BASED DIRECTED TARGET DETECTION FOR RECYCLABLE WASTE[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(6): 160-168. doi: 10.13205/j.hjgc.202406019
Citation: ZHANG Zheng, QIU Dahe, JING Zibo, XUE Bo, HU Xinyu. RETINANET-BASED DIRECTED TARGET DETECTION FOR RECYCLABLE WASTE[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(6): 160-168. doi: 10.13205/j.hjgc.202406019

基于RetinaNet的可回收垃圾有向目标检测

doi: 10.13205/j.hjgc.202406019
基金项目: 

国家自然科学基金项目(61976083)

详细信息
    作者简介:

    张铮(1970-),男,博士,教授,主要从事机器视觉、自动控制研究。271998085@qq.com

    通讯作者:

    邱达河(1999-),男,硕士研究生,主要从事机器视觉、深度学习研究。torres_21@163.com

RETINANET-BASED DIRECTED TARGET DETECTION FOR RECYCLABLE WASTE

  • 摘要: 可回收垃圾分拣是垃圾处理厂的重要工作,目前人工垃圾分拣效率低,工作环境恶劣,分拣成本高,为实现垃圾分拣的自动化,基于视觉的可回收垃圾自动检测研究具有重要意义。针对传统的水平框目标检测算法在检测时易丢失目标的方向信息,定位框重合现象严重,无法获取目标真实长宽,不利于后续分拣的缺点,提出基于RetinaNet的有向目标检测算法,该算法基于RetinaNet网络进行改进,在检测头中添加角度预测模块,使用PSC角度编码器改善角度回归边界问题,引入Balanced L1 loss损失函数平衡简单样本和困难样本的梯度贡献,替换骨干网络为Swin Transformer以增强网络特征提取能力。带角度预测的网络,能更准确地定位垃圾,改进后的网络精度(mAP)达到78.4%,比原算法提高了12百分点,同时与其他角度编码器相比PSC的检测效果均优于其他方法。
  • [1] ZHU C X,QIAN J C,WANG B R. YOLOX on embedded device with CCTV & TensorRT for intelligent multicategories garbage identification and classification[J]. IEEE Sensors Journal,2022,22(16):16522-16532.
    [2] CAI X,SHUANG F,SUN X,et al. Towards lightweight neural networks for garbage object detection[J]. Sensors,2022,22(19):7455.
    [3] 韦波,张衡,王斐,等.基于Faster R-CNN的海面垃圾检测研究[J].环境工程,2022,40(7):153-158.
    [4] 赵珊,刘子路,郑爱玲,等.基于MobileNetV2和IFPN改进的SSD垃圾实时分类检测方法[J].计算机应用,2022,42(增刊1):106-111.
    [5] MA J,SHAO W,YE H,et al. Arbitrary-oriented scene text detection via rotation proposals[J]. IEEE Transactions on Multimedia,2018,20(11):3111-3122.
    [6] YANG X,YAN J,FENG Z,et al. R3det:refined single-stage detector with feature refinement for rotating object[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2021,35(4):3163-3171.
    [7] DING J,XUE N,LONG Y,et al. Learning RoI transformer for oriented object detection in aerial images[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019:2849-2858.
    [8] XU Y,FU M,WANG Q,et al. Gliding vertex on the horizontal bounding box for multi-oriented object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2020,43(4):1452-1459.
    [9] YANG X,YAN J. Arbitrary-oriented object detection with circular smooth label[C]//Computer Vision-ECCV 2020:16th European Conference,Glasgow,UK,August 23-28,2020,Proceedings,Part Ⅷ 16. Springer International Publishing,2020:677-694.
    [10] YANG X,YANG X,YANG J,et al. Learning high-precision bounding box for rotated object detection via kullback-leibler divergence[J]. Advances in Neural Information Processing Systems,2021,34:18381-18394.
    [11] YU Y,DA F. Phase-shifting coder:Predicting accurate orientation in oriented object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023:13354-13363.
    [12] LIN T Y,GOYAL P,GIRSHICK R,et al. Focal loss for dense object detection[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017:2980-2988.
    [13] LIU Z,LIN Y,CAO Y,et al. Swin Transformer:hierarchical vision transformer using shifted windows[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021:10012-10022.
    [14] PANG J,CHEN K,SHI J,et al. Libra r-cnn:towards balanced learning for object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019:821-830.
    [15] LIN T Y,DOLLAR P,GIRSHICK R,et al. Feature pyramid networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017:2117-2125.
    [16] DOSOVITSKIY A,BEYER L,KOLESNIKOV A,et al. An image is worth 16x16 words:Transformers for image recognition at scale[J]. ArXiv Preprint ArXiv:2010.11929,2020.
    [17] LIN T Y,GOYAL P,GIRSHICK R,et al. Focal loss for dense object detection[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017:2980-2988.
    [18] YUDIN D,ZAKHARENKO N,SMETANIN A,et al. Hierarchical waste detection with weakly supervised segmentation in images from recycling plants[J]. Available at SSRN 4183424.
    [19] RUSSAKOVSKY O,DENG J,SU H,et al. Imagenet large scale visual recognition challenge[J]. International Journal of Computer Vision,2015,115(3):211-252.
    [20] XIA G S,BAI X,DING J,et al. DOTA:a large-scale dataset for object detection in aerial images[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018:3974-3983.
  • 加载中
计量
  • 文章访问数:  52
  • HTML全文浏览量:  12
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-24
  • 网络出版日期:  2024-07-11

目录

    /

    返回文章
    返回