A REVIEW OF RESEARCH PROGRESS OF PREDICTION MODELS FOR DISINFECTION BY-PRODUCTS: EMPIRICAL MODELS
-
摘要: 消毒副产物(DBPs)是饮用水消毒过程中的反应产物,严重威胁人体健康,因此建立相关模型、预测其浓度、实现精准控制显得尤为重要。综述了DBPs预测经验模型的研究进展,简要回顾了当前常见的消毒手段、DBPs种类以及对应的相关规范标准,并分别探讨了基于回归和基于机器学习的DBPs模型原理,对采取这2种方式构建的模型预测效果进行总结和评价。其中,重点分析了3种DBPs预测模型的机器学习算法原理,即随机森林算法、支持向量机和人工神经网络。提出了当前DBPs预测模型存在的问题,并展望了其未来发展方向,旨在推动构建精准度更高、适用性更强的DBPs预测模型。Abstract: Disinfection by-products (DBPs) are the reaction products during the disinfection process of drinking water, which are a serious threat to human health. Therefore, it is crucial to establish relevant models to predict their concentrations and achieve accurate control. This paper reviews the research progress of empirical models for DBPs prediction, briefly reviews the current common disinfection means, types of DBPs, and the corresponding relevant norms and standards, and explores the principles of DBP models based on regression and machine learning, respectively. The prediction effects of models constructed by taking these two approaches are summarized and evaluated. Among them, the principles of machine learning algorithms for three DBPs prediction models, namely, random forest algorithm, support vector machine, and artificial neural network, are focused on and analyzed. This paper puts forward the problems of the current DBPs disinfection by-products prediction model. It looks forward to its future development direction, aiming to promote the building of the prediction model with higher accuracy and applicability.
-
Key words:
- disinfection by-products /
- predictive models /
- regression methods /
- machine learning /
- model evaluation
-
[1] MAYER B K, DAUGHERTY E, ABBASZADEGAN M. Evaluation of the relationship between bulk organic precursors and disinfection byproduct formation for advanced oxidation processes[J]. Chemosphere, 2015, 121: 39-46. [2] 廖雨枫, 王正, 潘旸, 等. 再生水消毒副产物的检测、生成与控制[J]. 环境科学, 2024(3): 1561-1576. [3] SADIQ R, RODRIGUEZ M. Disinfection by-products (DBPs) in drinking water and predictive models for their occurrence: a review[J]. Science of the Total Environment 2004, 321(1/2/3): 21-46. [4] HU G, MIAN H R, MOHAMMADIUN S, et al. Appraisal of machine learning techniques for predicting emerging disinfection byproducts in small water distribution networks[J]. Journal of Hazardous Materials, 2023, 446: 130633. [5] REDONDO-HASSELERHARM P E, CSERBIK D, FLORES C, et al. Insights to estimate exposure to regulated and non-regulated disinfection by-products in drinking water[J]. Journal of Exposure Science & Environmental Epidemiology, 2022. [6] MIAN H R, CHHIPI-SHRESTHA G, HEWAGE K, et al. Predicting unregulated disinfection by-products in small water distribution networks: an empirical modelling framework[J]. Environmental Monitoring and Assessment, 2020, 192(8): 497. [7] CHOWDHURY S, CHAMPAGNE P, MCLELLAN P J. Models for predicting disinfection byproduct (DBP) formation in drinking waters: a chronological review[J]. Science of the Total Environment, 2009, 407(14): 4189-4206. [8] MOEINI M, SELA L, TAHA A F, et al. Bayesian optimization of booster disinfection scheduling in water distribution networks[J]. Water Research, 2023, 242: 120117. [9] SADIQ R, RODRIGUEZ M J, MIAN H R. Empirical models to predict disinfection by-products (DBPs) in drinking water: an updated review[M]. Encyclopedia of Environmental Health(Second Edition), 2019: 324-338. [10] RODRIGUEZ M J, SÉRODES J B, LEVALLOIS P. Behavior of trihalomethanes and haloacetic acids in a drinking water distribution system[J]. Water Research, 2004, 38(20): 4367-4382. [11] SHARMA V K, ZBORIL R, MCDONALD T J. Formation and toxicity of brominated disinfection byproducts during chlorination and chloramination of water: a review[J]. Journal of Environmental Science and Health, Part B, 2014, 49(3): 212-228. [12] 张积洋, 吴纯德, 王林, 等. 二氧化氯应用于水箱二次供水安全消毒研究[J]. 水处理技术, 2012, 38(9): 83-87. [13] 贺渝. 活性炭与次氯酸钠反应生成消毒副产物的规律研究[D]. 哈尔滨:哈尔滨工业大学, 2021. [14] USEPA. National Primary Drinking Water Regulations: Stage 2 Disinfectants and Disinfection Byproducts Rule: Final rule[N]. 2006-01-04(71(2)). [15] 国家市场监督管理总局, 国家标准化管理委员会. 生活饮用水卫生标准: GB 5749—2022[S]. 北京:中国标准出版社, 2022. [16] The European Parliament, The Council of the European Union. Directive (EU) 2020/2184 of the European Parliament and of the Council of 16 December 2020 on the quality of water intended for human consumption (recast)[S]. 2020. [17] Water and Air Quality Bureau, Healthy Environments and Consumer Safety Branch, Health Canada.Guidelines for Canadian Drinking Water Quality—Summary Table[S]. Ottawa, 2017. [18] The Water Supply (Water Quality) Regulations: No.614[A]//UK Statutory Instruments. 2016: 36-37. [19] 日本水道協会. 水質検査計画策定のための手引書[S]. 2004. [20] WHO (World Health Organization). Guidelines for drinking-water quality[S]. 2022. [21] OZGUR C, KAPLAN-BEKAROGLU S S. Carbonaceous disinfection by-products in low suva waters: occurrence, formation potential, and health risk assessment[J]. Applied Ecology and Environmental Research, 2022, 20(5): 3833-3851. [22] BAYTAK D, SOFUOGLU A, INAL F, et al. Seasonal variation in drinking water concentrations of disinfection by-products in IZMIR and associated human health risks[J]. Science of the Total Environment, 2008, 407(1): 286-296. [23] GOSLAN E H, KRASNER S W, VILLANUEVA C M, et al. Disinfection by-product occurrence in selected European waters[J]. Journal of Water Supply Research and Technology-Aqua, 2014, 63(5): 379-390. [24] CHAVES R S, SALVADOR D, NOGUEIRA P, et al. Assessment of water quality parameters and their seasonal behaviour in a portuguese water supply system: a 6-year monitoring study[J]. Environmental Management, 2022, 69(1): 111-127. [25] MUJATHEL A M, EL-BARKY W, FAYED M, et al. Trihalomethane evaluation in chlorinated treated drinking water sources in Saudi Arabia (Aseer region a case study)[J]. Alexandria Engineering Journal, 2022, 61(12): 12699-12711. [26] 王虹, 於文萱, 胡宇星, 等. 不同消毒方式供水管网中消毒副产物的分布特征[J]. 同济大学学报(自然科学版), 2023, 51(10): 1518-1526. [27] 孙煜, 苗秀菁, 梁玲杰, 等. 烟台市蓬莱区2018—2022年城市饮用水消毒副产物监测分析[J]. 海峡预防医学杂志, 2023, 29(3): 68-70. [28] 周闰, 杨丽, 吴宇伉, 等. 无锡市不同生活饮用水中两类消毒副产物三卤甲烷及卤乙酰胺的浓度比较[J]. 环境与职业医学, 2023, 40(4): 456-461. [29] 叶小凡, 周小峰, 万杨, 等. 浙江省单村供水中消毒副产物存在水平及健康风险评估[J]. 给水排水, 2023, 59(6): 1-8. [30] CHOWDHURY S, CHAMPAGNE P, MCLELLAN P J. Factorial analysis of trihalomethanes formation in drinking water[J]. Water Environment Research, 2010, 82(6): 556-566. [31] 叶必雄, 王五一, 杨林生, 等. 三种饮用水消毒副产物形成模型对比研究[J]. 供水技术, 2012(5): 27-32. [32] BABAEI A A, ATARI L, AHMADI M, et al. Trihalomethanes formation in Iranian water supply systems: predicting and modeling[J]. Journal of Water and Health, 2015, 13(3): 859-869. [33] WATSON K, FARRÉ M J, BIRT J, et al. Predictive models for water sources with high susceptibility for bromine-containing disinfection by-product formation: implications for water treatment[J]. Environmental Science and Pollution Research, 2015, 22(3): 1963-1978. [34] MCBEAN E, ZHU Z, ZENG W. Modeling formation and control of disinfection byproducts in chlorinated drinking waters[J]. Water Supply, 2010, 10(5): 730-739. [35] RODRIGUEZ M J, SÉRODES J, MORIN M. Estimation of water utility compliance with trihalomethane regulations using a modelling approach[J]. Journal of Water Supply: Research and Technology-Aqua, 2000, 49(2): 57-73. [36] URANO K, WADA H, TAKEMASA T. Empirical rate equation for trihalomethane formation with chlorination of humic substances in water[J]. Water Research, 1983, 17(12): 1797-1802. [37] 李君文, 于祚斌, 高明, 等. 饮水氯消毒三卤甲烷的预测模型[J]. 中国公共卫生, 1993(12): 538-540. [38] CHANG E E, CHAO S, CHIANG P, et al. Effects of chlorination on THMs formation in raw water[J]. Toxicological & Environmental Chemistry, 1996, 56(1/2/3/4): 211-225. [39] ZOU H, YANG S, XU X, et al. Formation of POX and NPOX with chlorination of fulvic acid in water: empirical models[J]. Water Research, 1997, 31(6): 1536-1541. [40] 伍海辉, 高乃云, 乐林生. 黄浦江水用化合氯消毒生成DBPs的规律及数学模型研究[J]. 净水技术, 2008(2): 15-18, 46. [41] UYAK V, DEMIRBAS K D. Formation of disinfection byproducts (DBPs) in surface water sources: differential ultraviolet (UV) absorbance approach[J]. Environmental Forensics, 2014, 15(1): 52-65. [42] HONG H, SONG Q, MAZUMDER A, et al. Using regression models to evaluate the formation of trihalomethanes and haloacetonitriles via chlorination of source water with low SUVA values in the Yangtze River Delta region, China[J]. Environmental Geochemistry and Health, 2016, 38(6): 1303-1312. [43] 宋倩云, 宁萍, 孙洪杰, 等. 长三角部分水源水氯化消毒后卤乙酸形成的多元回归模型研究[J]. 环境科学学报, 2017, 37(6): 2048-2054. [44] LIN J. Regression models evaluating THMs, HAAs and HANs formation upon chloramination of source water collected from Yangtze River Delta Region, China[J]. Ecotoxicology and Environmental Safety, 2018, 160: 8. [45] 刘俊萍, 陈镜吉, 宋亚丽, 等. 供水管网终端消毒副产物分布特征及预测模型[J]. 环境科学, 2020, 41(7): 3307-3314. [46] 姜旭, 赵慕南, 纪峰, 等. 东北地区原水氯化消毒副产物三氯甲烷生成模型预测[J]. 哈尔滨工业大学学报, 2020, 52(11): 33-39. [47] ALBANAKIS C, TSANANA E, FRAGKAKI A G. Modeling and prediction of trihalomethanes in the drinking water treatment plant of Thessaloniki, Greece[J]. Journal of Water Process Engineering, 2021, 43: 102252. [48] 江钆泓, 毕然, 杜家豫, 等. 基于不同水厂水质调查的消毒副产物生成趋势及模型预测[J]. 环境工程学报, 2022, 16(2): 515-523. [49] 方匡南, 吴见彬, 朱建平, 等. 随机森林方法研究综述[J]. 统计与信息论坛, 2011, 26(3): 32-38. [50] 曹桃云. 基于随机森林的变量重要性研究[J]. 统计与决策, 2022, 38(4): 60-63. [51] BREIMAN L. Random forests[J]. Machine Learning, 2001, 45(1): 5-32. [52] 林香亮, 袁瑞, 孙玉秋, 等. 支持向量机的基本理论和研究进展[J]. 长江大学学报(自科版), 2018, 15(17): 48-53, 6. [53] 李素, 袁志高, 王聪, 等. 群智能算法优化支持向量机参数综述[J]. 智能系统学报, 2018, 13(1): 70-84. [54] 王祎, 贾文雅, 尹雪婷, 等. 人工神经网络的发展及展望[J]. 智能城市, 2021, 7(8): 12-13. [55] 赵崇文. 人工神经网络综述[J]. 山西电子技术, 2020(3): 94-96. [56] 王炜, 吴耿锋, 张博锋, 等. 径向基函数(RBF)神经网络及其应用[J]. 地震, 2005(2): 19-25. [57] SPECHT D F. A general regression neural network[J]. IEEE Transactions on Neural Networks, 1991, 2(6): 568-576. [58] SPECHT D F. The general regression neural network-rediscovered[J]. Neural Network, 1993, 6(7): 1033-1034. [59] 顾秀萍. 自适应神经模糊推理系统(ANFIS)及其仿真[J]. 火力与指挥控制, 2010, 35(2): 48-49, 53. [60] KULKARNI P, CHELLAM S. Disinfection by-product formation following chlorination of drinking water: artificial neural network models and changes in speciation with treatment[J]. Science of the Total Environment, 2010, 408(19): 4202-4210. [61] SINGH K P, GUPTA S. Artificial intelligence based modeling for predicting the disinfection by-products in water[J]. Chemometrics and Intelligent Laboratory Systems, 2012, 114: 122-131. [62] HONG H, ZHANG Z, GUO A, et al. Radial basis function artificial neural network (RBF ANN) as well as the hybrid method of RBF ANN and grey relational analysis able to well predict trihalomethanes levels in tap water[J]. Journal of Hydrology, 2020, 591: 125574. [63] DENG Y, ZHOU X, SHEN J, et al. New methods based on back propagation (BP) and radial basis function (RBF) artificial neural networks (ANNs) for predicting the occurrence of haloketones in tap water[J]. Science of the Total Environment 2021, 772: 145534. [64] OKOJI C N, OKOJI A I, IBRAHIM M S, et al. Comparative analysis of adaptive neuro-fuzzy inference system (ANFIS) and RSRM models to predict DBP (trihalomethanes) levels in the water treatment plant[J]. Arabian Journal of Chemistry, 2022, 15(6): 103794. [65] XU Z, SHEN J, QU Y, et al. Using simple and easy water quality parameters to predict trihalomethane occurrence in tap water[J]. Chemosphere, 2022, 286: 131586. [66] LIU K, LIN T, ZHONG T, et al. New methods based on a genetic algorithm back propagation (GABP) neural network and general regression neural network (GRNN) for predicting the occurrence of trihalomethanes in tap water[J]. Science of the Total Environment, 2023, 870: 161976. [67] 洪华嫦, 陈敏杰, 康家馨, 等. 基于自适应神经模糊推理系统和简单水质指标预测供水系统三卤甲烷的浓度[J]. 环境科学学报, 2023, 43(6): 290-299. [68] 程国建, 刘连宏. 机器学习的可解释性综述[J]. 智能计算机与应用, 2020, 10(5): 6-8, 13. [69] 王志强, 任金哥, 韩硕, 等. 基于可解释性机器学习的建筑物物化阶段碳排放量预测研究[J]. 安全与环境学报, 2024, 24(6): 2454-2466.
点击查看大图
计量
- 文章访问数: 41
- HTML全文浏览量: 17
- PDF下载量: 2
- 被引次数: 0