A REVIEW ON ENVIRONMENTAL POLLUTION, TOXICITY AND HUMAN EXPOSURE OF HEXABROMOCYCLODODECANE, A BROMINATED FLAME RETARDANT
-
摘要: 六溴环十二烷(hexabromocyclododecanes, HBCD)是一种溴含量很高的脂环族添加型阻燃剂,曾被广泛应用于生产聚苯乙烯类保温材料、纺织品和电气及电子设备等。由于HBCD与产品没有化学结合,在生产、使用和处置过程中会不可避免地从产品中释放出来,HBCD已被证明对生物的肝脏、甲状腺和神经等产生毒性作用,在生物体内积累会对人体造成严重危害。近年来,在日常用品、大气、水、土壤和各种生物体内甚至母乳中都检测到了HBCD的存在,对人类和环境具有潜在的长期危害。食品、空气和灰尘是人体摄入HBCD的主要途径,无论何处接触途径,学步儿童的接触率均高于成年人,且HBCD的职业暴露对职业人员的健康影响更为严重。综述了HBCD在环境介质和生物体内的分布及测定方法,总结了其对生物体的毒性作用,并探讨了HBCD的人体暴露途径及风险评估,提出关于HBCD的未来研究应更多地关注职业人群的暴露途径与风险,探索HBCD对人体作用的潜在机制。Abstract: Hexabromocyclododecane (HBCD) is an alicyclic additive flame retardant with high bromine content. It has been widely used in the production of polystyrene building insulation materials, textiles, electrical and electronic equipment. Because HBCD is not chemically bound to the products, it will be inevitably released from the product during production, use and disposal. HBCD has been proven to have toxic effects on the liver, thyroid and nerves of organisms, and its accumulation in organisms can cause serious harm to the human body. In recent years, the presence of HBCD has been detected in daily necessities, atmosphere, water, soil and various organisms, even in breast milk, which has potential long-term harm to humans and the environment. Food, air and dust are the main pathways for the human body to ingest HBCD. Regardless of the route of exposure, the exposure rate of toddlers is higher than that of adults, and occupational exposure to HBCD has a more serious impact on occupational personnel health. This article reviews the distribution and determination methods of HBCD in environmental media and organisms, summarizes its toxic effects on organisms, and discusses the human exposure pathways and risk assessment of HBCD. This paper also proposes that future research on HBCD should pay more attention to the exposure pathways and risks of occupational groups, and explore the potential mechanism of HBCD on the human body.
-
Key words:
- hexabromocyclododecane /
- environmental pollution /
- toxic effect /
- human exposure
-
[1] 易姗, 朱婧, 刘建国. 中国六溴环十二烷(HBCD)的职业环境健康风险评估[J]. 安全与环境学报, 2015, 15(6): 34-38. [2] 杨昭, 王莹莹. 农田土壤中六溴环十二烷的污染过程以及生物修复方法研究进展[J]. 农业环境科学学报, 2021, 40(9): 1839-1850. [3] 李玉芳, 佟玲, 徐进力, 等.2010—2018年北京市人体中六溴环十二烷的残留特征与风险评估[J].岩矿测试, 2023, 42(2): 326-337. [4] 邹瑜, 钟鲲, 叶靖, 等.六溴环十二烷在聚苯乙烯保温材料中的替代进展[J].塑料, 2023, 52(2): 94-100. [5] LU S Y, TAN Z, JIANG Y S, et al. Hexabromocyclododecanes in breast milk from residents in Shenzhen, China: implications for infant exposure[J]. Science of the Total Environment, 2018, 622: 1090-1097. [6] 张贞莹, 温蓓, 黄红林, 等.脂环族溴代阻燃剂的生物富集、代谢及毒性效应研究进展[J].环境化学, 2022, 41(5): 1480-1503. [7] JO H, SON M H, SEO S H, et al. Matrix-specific distribution and diastereomeric profiles of hexabromocyclododecane (HBCD) in a multimedia environment: air, soil, sludge, sediment, and fish[J]. Environmental Pollution, 2017, 226: 515-522. [8] RAUERT C, KURIBARA I, KATAOKA T, et al. Direct contact between dust and HBCD-treated fabrics is an important pathway of source-to-dust transfer[J]. Science of the Total Environment, 2016, 545/546: 77-83. [9] LU J F, HE M J, YANG Z H, et al. Occurrence of tetrabromobisphenol a (TBBPA) and hexabromocyclododecane (HBCD) in soil and road dust in Chongqing, western China, with emphasis on diastereoisomer profiles, particle size distribution, and human exposure[J]. Environmental Pollution, 2018, 242Pt A: 219-228. [10] WU M H, HAN T, XU G, et al. Occurrence of Hexabromocyclododecane in soil and road dust from mixed-land-use areas of Shanghai, China, and its implications for human exposure[J]. Science of the Total Environment, 2016, 559: 282-290. [11] BESIS A, CHRISTIA C, POMA G, et al. Legacy and novel brominated flame retardants in interior car dust-Implications for human exposure[J]. Environmental Pollution, 2017, 230: 871-881. [12] 吴玉丽, 肖羽堂, 王冠平, 等.多溴联苯醚、六溴环十二烷和四溴双酚A在环境中污染现状的研究进展[J].环境化学, 2021, 40(2): 384-403. [13] BARGHI M, SHIN E S, KIM J C, et al. Human exposure to HBCD and TBBPA via indoor dust in Korea: estimation of external exposure and body burden[J]. Science of the Total Environment, 2017, 593/594: 779-786. [14] KWEON D J, KIM M K, ZOH K D. Distribution of brominated flame retardants and phthalate esters in house dust in Korea[J]. Environmental Engineering Research, 2018, 234: 354-363. [15] WANG J, WANG Y, SHI Z, et al. Legacy and novel brominated flame retardants in indoor dust from Beijing, China: occurrence, human exposure assessment and evidence for PBDEs replacement[J]. Science of the Total Environment, 2018, 618: 48-59. [16] DE WIT C A, BJORKLUND J A, THURESSON K. Tri-decabrominated diphenyl ethers and hexabromocyclododecane in indoor air and dust from Stockholm microenvironments 2: indoor sources and human exposure[J]. Environ Int, 2012, 391: 141-147. [17] LI Y, ZHU X, WANG L, et al. Levels and gas-particle partitioning of hexabromocyclododecanes in the urban air of Dalian, China[J]. Environ Sci Pollut Res Int, 2018, 2527: 27514-27523. [18] JEON J W, KIM C S, KIM L, et al. Distribution and diastereoisomeric profiles of hexabromocyclododecanes in air, water, soil, and sediment samples in South Korea: application of an optimized analytical method[J]. Ecotoxicol Environ Saf, 2019, 181: 321-329. [19] WANG X, SUN R, CHEN Y, et al. Temporal-spatial distribution and diastereoisomer pattern of hexabromocyclododecane in the vicinity of a chemical plant[J]. Journal of Environment Sciences (China), 2019, 82(8): 203-212. [20] LU H, MA X J, HUANG X J, et al. Distribution, diastereomer-specific accumulation and associated health risks of hexabromocyclododecanes (HBCDs) in soil-vegetable system of the Pearl River Delta region, South China[J]. J Environ Manage, 2019, 248: 109321. [21] WU T, LI X, ZHENG Z, et al. Hexabromocyclododecanes in surface soil-maize system around Baiyangdian Lake in North China: distribution, enantiomer-specific accumulation, transport, temporal trend and dietary risk[J]. J Hazard Mater, 2023, 451: 131180. [22] ZHANG Y, LU Y, WANG P, et al. Transport of Hexabromocyclododecane (HBCD) into the soil, water and sediment from a large producer in China[J]. Science of the Total Environment, 2018, 610/611: 94-100. [23] 秦晓雷. 六溴环十二烷环境污染现状及毒性研究进展[J]. 当代化工研究, 2022, 21: 98-100. [24] WANG X, YUAN X, YANG S, et al. Concentrations, distributions, and risk assessment of HBCD in sediment in the Weihe River Basin in Northwest China[J]. Int J Environ Res Public Health, 2018, 1511. [25] ZHANG Y, BANINLA Y, YU J, et al. Occurrence, Spatial Distribution and Health Risk of Hexabromocyclododecane (HBCD) in Source Water in the Lower Yangtze River, China[J]. Bull Environ Contam Toxicol, 2022, 1096: 943-948. [26] LI H, ZHANG Z, SUN Y, et al. Tetrabromobisphenol A and hexabromocyclododecanes in sediments and biota from two typical mangrove wetlands of South China: distribution, bioaccumulation and biomagnification[J]. Science of the Total Environment, 2021, 750: 141695. [27] WANG L, ZHANG M, LOU Y, et al. Levels and distribution of tris-(2, 3-dibromopropyl) isocyanurate and hexabromocyclododecanes in surface sediments from the Yellow River Delta wetland of China[J]. Mar Pollut Bull, 2017, 1141: 577-582. [28] ZHANG Y, ZHENG M, WANG L, et al. High level of tris-(2, 3-dibromopropyl) isocyanurate (TBC) and hexabromocyclododecanes (HBCDs) in sediments from the intertidal zone of New River Estuary-a polluted and degraded wetland[J]. Mar Pollut Bull, 2018, 130: 287-292. [29] ICHIHARA M, YAMAMOTO A, KAKUTANI N, et al. Hexabromocyclododecane in riverine and estuarine sediments from Osaka, Japan: spatial distribution and concentration variability within identical samples[J]. Environ Sci Pollut Res Int, 2020, 2728: 35782-35791. [30] YANG C, ABDALLAH M A, DESBOROUGH J, et al. Trends in hexabromocyclododecanes in the UK and North America[J]. Science of the Total Environment, 2019, 658: 861-867. [31] ANIM A K, DRAGE D S, GOONETILLEKE A, et al. Distribution of PBDEs, HBCDs and PCBs in the Brisbane River estuary sediment[J]. Mar Pollut Bull, 2017, 1201/1202: 165-173. [32] SUN R, LUO X, ZHENG X, et al. Hexabromocyclododecanes (HBCDs) in fish: evidence of recent HBCD input into the coastal environment[J]. Mar Pollut Bull, 2018, 126: 357-362. [33] WANG W, CHOO G, CHO H S, et al. The occurrence and distribution of hexabromocyclododecanes in freshwater systems, focusing on tissue-specific bioaccumulation in crucian carp[J]. Science of the Total Environment, 2018, 635: 470-478. [34] ZHANG Y, LU Y, WANG P, et al. Biomagnification of Hexabromocyclododecane (HBCD) in a coastal ecosystem near a large producer in China: human exposure implication through food web transfer[J]. Science of the Total Environment, 2018, 624: 1213-1220. [35] ZACCARONI A, ANDREINI R, FRANZELLITTI S, et al. Halogenated flame retardants in stranded sperm whales (Physeter macrocephalus) from the Mediterranean Sea[J]. Science of the Total Environment, 2018, 635: 892-900. [36] QIAN Z, TANG S, LIU Z, et al. Levels, distribution and risk assessment of hexabromocyclododecane (HBCD) in fish in Xiamen, China[J]. Environ Monit Assess, 2022, 1945: 371. [37] QIAN Z, XU C, DONG X, et al. Spatiotemporal characteristics and pollution level of brominated flame retardants in bivalves from Fujian southern coastal areas[J]. Environ Sci Pollut Res Int, 2021, 28(25):33623-33631. [38] XIA W, WANG J, YANG H, et al. Bioaccumulation and Distribution of Hexabromocyclododecane Isomers in Duck Tissues[J]. Bull Environ Contam Toxicol, 2018, 1006: 754-759. [39] TAVOLONI T, STRAMENGA A, STECCONI T, et al. Brominated flame retardants (PBDEs and HBCDs) and perfluoroalkyl substances (PFASs) in wild boars (Sus scrofa) from Central Italy[J]. Science of the Total Environment, 2023, 858Pt 1: 159745. [40] LI H, HU Y, SUN Y, et al. Bioaccumulation and translocation of tetrabromobisphenol A and hexabromocyclododecanes in mangrove plants from a national nature reserve of Shenzhen City, South China[J]. Environ Int, 2019, 129: 239-246. [41] HUANG H, WANG D, WAN W, et al. Hexabromocyclododecanes in soils and plants from a plastic waste treatment area in North China: occurrence, diastereomer- and enantiomer-specific profiles, and metabolization[J]. Environ Sci Pollut Res Int, 2017, 2427: 21625-21635. [42] KIM J T, CHOI Y J, BARGHI M, et al. Occurrence and distribution of old and new halogenated flame retardants in mosses and lichens from the South Shetland Islands, Antarctica[J]. Environmental Pollution, 2018, 235: 302-311. [43] BARGHI M, SHIN E S, CHOI S D, et al. HBCD and TBBPA in human scalp hair: evidence of internal exposure[J]. Chemosphere, 2018, 207: 70-77. [44] SHI Z, ZHANG L, ZHAO Y, et al. A national survey of tetrabromobisphenol-A, hexabromocyclododecane and decabrominated diphenyl ether in human milk from China: occurrence and exposure assessment[J]. Science of the Total Environment, 2017, 599/600: 237-245. [45] HUANG M, LI J, XIAO Z, et al. Tetrabromobisphenol A and hexabromocyclododecane isomers in breast milk from the general population in Beijing, China: contamination levels, temporal trends, nursing infant’s daily intake, and risk assessment[J]. Chemosphere, 2020, 244: 125524. [46] RAWN D F, RYAN J J, SADLER A R, et al. Brominated flame retardant concentrations in sera from the Canadian Health Measures Survey (CHMS) from 2007 to 2009[J]. Environ Int, 2014, 63: 26-34. [47] ABDALLAH M A, PAWAR G, HARRAD S. Evaluation of 3D-human skin equivalents for assessment of human dermal absorption of some brominated flame retardants[J]. Environ Int, 2015, 84: 64-70. [48] 朱超飞, 杨文龙, 殷也筑, 等.高效液相色谱-三重四极杆质谱法测定土壤和沉积物中六溴环十二烷和四溴双酚A[J].环境科学研究, 2022, 35(9): 2120-2127. [49] 王馨蕾, 崔兆杰. 超声波提取-气相色谱氢火焰测定土壤中六溴环十二烷[J]. 环境科学研究, 2019, 32(3): 493-499. [50] WANG X, ZHANG X, WANG Z, et al. Determination of hexabromocyclododecane in soil by supercritical fluid extraction and gas chromatography mass spectrometry[J]. Analytical Methods, 2018, 1010: 1181-1189. [51] ZHAO Y, LI Q, MIAO X, et al. Determination of hexabromocyclododecanes in sediments from the Haihe River in China by an optimized HPLC-MS-MS method[J]. Journal Environment Sciences (China), 2017, 55: 174-183. [52] 李岩, 王龙星, 朱秀华, 等.高效液相色谱-电喷雾质谱法测定环境大气中的六溴环十二烷[J].色谱, 2017, 35(10): 1080-1085. [53] YU Y, ZHU X, ZHU J, et al. Rapid and simultaneous analysis of tetrabromobisphenol A and hexabromocyclododecane in water by direct immersion solid phase microextraction: uniform design to explore factors[J]. Ecotoxicol Environ Saf, 2019, 176: 364-369. [54] LARA A B, CABALLO C, SICILIA M D, et al. Halogen bonding for increasing efficiency in liquid-liquid microextraction: application to the extraction of hexabromocyclododecane enantiomers in river water[J]. J Chromatogr A, 2019, 1600: 95-104. [55] HUANG J, LI R, SHI T, et al. Determination of multiple organic flame retardants in maricultural water using High-volume/High-throughput Solid-phase extraction followed by liquid/gas chromatography tandem mass spectrometry[J]. J Chromatogr A, 2022, 1663: 462766. [56] 沈菲, 朱峰, 吉文亮. QuEChERS-超高效液相色谱-串联质谱法测定鱼肉中六溴环十二烷[J]. 环境监控与预警, 2022, 14(5): 71-75. [57] 于紫玲, 左优, 马瑞雪, 等.QuEChERS/超高效液相色谱-串联质谱法同时测定水产品中四溴双酚A与六溴环十二烷[J].分析测试学报, 2019, 38(3): 301-306. [58] OKSOVA L, TOLGYESSY P. Determination of Hexabromocyclododecanes in Fish Using Modified QuEChERS Method with Efficient Extract Clean-Up Prior to Liquid Chromatography-Tandem Mass Spectrometry[J]. Separations, 2020, 73. [59] YAO F, WANG J, CHEN J, et al. Efficient Detection of α-, β-, and γ-Hexabromocyclododecane Isomers and Their Hydroxylated Metabolites in Poultry Tissues Based on Dispersive Solid Phase Extraction Using an Enhanced Lipid-Removing Material Combined with UPLC-MS/MS[J]. Food Analytical Methods, 2017, 111: 251-259. [60] YUAN J P, SUN Y M, ZHAO J, et al. Rapid determination of hexabromocyclododecane enantiomers in animal meat by matrix solid phase dispersion coupled with LC-MS/MS[J]. Food Chem, 2022, 394: 133405. [61] LEE J G, ANH J, KANG G J, et al. Development of an analytical method for simultaneously determining TBBPA and HBCDs in various foods[J]. Food Chem, 2020, 313: 126027. [62] EGUCHI A, MATSUKAMI H, TAKAHASHI A, et al. Simultaneous determination of polybrominated diphenyl ethers and hexabromocyclododecane in plastic waste by short-column gas-chromatography-quadrupole mass spectrometry and electron capture detector[J]. Chemosphere, 2021, 277: 130301. [63] MAO T, WANG H, PENG Z, et al. Determination of Hexabromocyclododecane in Expanded Polystyrene and Extruded Polystyrene Foam by Gas Chromatography-Mass Spectrometry[J]. Molecules, 2021, 2623. [64] 石亚楠, 詹发强, 袁和平, 等.聚苯乙烯泡沫中六溴环十二烷(HBCD)释放速率测定方法[J].环境化学, 2018, 37(2): 264-270. [65] SHI X, ZHA J, WEN B, et al. Diastereoisomer-specific neurotoxicity of hexabromocyclododecane in human SH-SY5Y neuroblastoma cells[J]. Science of the Total Environment, 2019, 686: 893-902. [66] ABE N, SASAKI M, NAKAJIMA A. Tetrabromobisphenol A and hexabromocyclododecane, brominated flame retardants, trigger endoplasmic reticulum stress and activate necroptosis signaling in PC12 cells[J]. Environ Toxicol Pharmacol, 2023, 98: 104056. [67] WANG J, DAI G D. Comparative Effects of Brominated Flame Retardants BDE-209, TBBPA, and HBCD on Neurotoxicity in Mice[J]. Chem Res Toxicol, 2022, 359: 1512-1518. [68] DAI W, TANG T, DAI Z, et al. Probing the mechanism of hepatotoxicity of hexabromocyclododecanes through toxicological network analysis[J]. Environ Sci Technol, 2020, 5423: 15235-15245. [69] GANNON A M, NUNNIKHOVEN A, LISTON V, et al. Rat strain response differences upon exposure to technical or alpha hexabromocyclododecane[J]. Food Chem Toxicol, 2019, 130: 284-307. [70] GUO Z, ZHANG L, LIU X, et al. The enrichment and purification of hexabromocyclododecanes and its effects on thyroid in zebrafish[J]. Ecotoxicol Environ Saf, 2019, 185: 109690. [71] LI R J, GAO H, NA G S, et al. Hexabromocyclododecane-induced Genotoxicity in Cultured Human Breast Cells through DNA Damage[J]. Biomed Environ Sci, 2017, 304: 296-300. [72] SHI J, WANG X, CHEN L, et al. HBCD, TBECH, and BTBPE exhibit cytotoxic effects in human vascular endothelial cells by regulating mitochondria function and ROS production[J]. Environ Toxicol, 2021, 368: 1674-1682. [73] BARNETT L M A, KRAMER N E, BUERGER A N, et al. Transcriptomic analysis of the differential nephrotoxicity of diverse brominated flame retardants in rat and human renal cells[J]. Int J Mol Sci, 2021, 2218. [74] SHI Z, ZHANG L, LI J, et al. Legacy and emerging brominated flame retardants in China: a review on food and human milk contamination, human dietary exposure and risk assessment[J]. Chemosphere, 2018, 198: 522-536. [75] WANG J, ZHAO X, WANG Y, et al. Tetrabromobisphenol A, hexabromocyclododecane isomers and polybrominated diphenyl ethers in foodstuffs from Beijing, China: contamination levels, dietary exposure and risk assessment[J]. Science of the Total Environment, 2019, 666: 812-820. [76] LEE C C, CHANG W H, CHEN H L. Dietary exposure and risk assessment of exposure to hexabromocyclododecanes in a Taiwan population[J]. Environ Pollut, 2019, 249: 728-734. [77] ONGONO J S, DOW C, GAMBARETTI J, et al. Dietary exposure to brominated flame retardants and risk of type 2 diabetes in the French E3N cohort[J]. Environ Int, 2019, 123: 54-60. [78] WAIYARAT S, BOONTANON S K, BOONTANON N, et al. Exposure, risk and predictors of hexabromocyclododecane and Tetrabromobisphenol: a in house dust from urban, rural and E-waste dismantling sites in Thailand[J]. Chemosphere, 2022, 302: 134730. [79] ZHENG Q, MO K, LOU Y, et al. Tetrabromobisphenol A and hexabromocyclododecanes from interior and surface dust of personal computers: implications for sources and human exposure[J]. Environ Sci Pollut Res Int, 2023, 3015: 44316-44324.
点击查看大图
计量
- 文章访问数: 31
- HTML全文浏览量: 17
- PDF下载量: 3
- 被引次数: 0